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Abstract

We consider a problem of motion planning under uncertainty. A robot can
navigate freely in the plane and, using a built-in vision system, can determine
distances and angles. Initially, the robot stands at a point close to a an edge
of a polygonal obstacle (e. g. a wall of a huge building) and faces a corner at
distance 1 from its position. The other wall which forms the corner is invisible
from the starting position and the robot does not know the angle of the corner.
The task of the robot is to move on a short path to a point where that wall
becomes visible.

We show that there is a competitive strategy which guarantees that, for any
possible value of the angle, the length of the path the robot walks until it can
look around the corner is bounded by the length of the shortest path to do so,
times the constant c ≈ 1.21218. Furthermore, we prove that our strategy is
optimal in that no smaller competitive factor than c can be achieved. We give
a simple formula for the robot to find the optimal path.

A more general problem arises if the robot’s starting point is not required
to lie directly at the visible wall. We provide optimal competitive strategies for
all such cases; the competitive factor varies between 1 and c, depending on the
angle between the visible wall and the line through the starting point and the
corner.
Key words. Motion planning, navigation, competitive algorithms, uncer-
tainty, robotics.

1 Introduction

Algorithmic motion-planning in robotics is a classical field in computational geometry,
see Schwartz and Sharir [11], Schwartz and Yap [12], or Mitchell [8] for surveys.

In the majority of the existing work it is assumed that the environment in which
the system moves is known in advance. In real life, this assumption is not always
granted. Autonomous vehicles should be able to find their ways through, or learn,
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unknown terrain as efficently as possible. This means that the task must be accom-
plished correctly, but as little as possible of resources like time or energy should be
used.

In the last years, several researchers independently began to apply to geometric
planning problems the concept of competitive algorithms introduced by Sleator and
Tarjan [13]. Here one compares what can be achieved with incomplete information
against what could be achieved if full information was available. More precisely, S is
a competitive strategy for problem class P if there exists a constant c such that, for
each instance P of P , the cost of applying S to P does not exceed c times the cost of
solving P in an optimal way, given full information. The minimum c satisfying this
condition is called the competitive factor of S.

Among other work, competitive geometric algorithms have been developed by
Papadimitriou and Yanakakis [10], Blum, Raghhavan, and Schieber [2], and Eades,
Lin, and Wormald [5] for path planning in the presence of obstacles in the plane, by
Deng, Kameda, and Papadimitriou [4] for learning the interior of a polygon that may
have a bounded number of holes, and by Klein [7] for finding a path in the interior
of special simple polygons called streets.
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Figure 1: The shortest path from W to M(ϕ).

In this paper we study an elementary problem related to learning an unknown
environment. Suppose that two halflines meet at the origin, O, as shown in Figure 1.
The shaded wedge formed by the halflines is opaque and has an angle less than 180◦.
Now let us assume that on one of the halflines a mobile robot is located at point W ,
outside the wedge, that is equipped with an on-board vision system facing O. Its task
is to “look around the corner”, i. e. to inspect the other halfline which is invisible
from W (but for its endpoint, O). This task might occur as one basic step for an
autonomous system which explores an unknown environment. A strategy for this class
of problems should produce a path from W to any point on the prolongation, M(ϕ),
of the invisible halfline. Here, ϕ denotes the angle between the invisible halfline and
the prolongation of the visible one.

A competitive strategy for this problem should have a bounded relative detour,
which is the ratio of the robot’s path length and the shortest path. If the value of
ϕ lies between 0◦ and 90◦, the shortest path from W to M(ϕ) is perpendicular to
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M(ϕ), see Figure 1 (i). If ϕ is bigger than 90◦, the point of M(ϕ) closest to W is the
corner itself; see (ii).

The only uncertainty for the robot in this type of problem is the actual value of
ϕ. Obviously, walking straight to the corner always fulfills the task. But the length
of the path created is a constant, whereas an arbitrarily short path could be sufficient
for small values of ϕ. This shows that walking in a fixed direction does not lead to a
competitive strategy.

In Section 2 we characterize, by means of a quite natural property, the competitive
strategies among all strategies for the corner problem. Although it turns out that
there is no lack of competitive strategies, it is not so easy to construct a strategy
whose factor is—say—less than 1.5. A lower bound for the competitive factor of all
strategies for this problem is given in Section 3.

In Section 4 we start attacking the optimality problem. Our approach leads to
the differential equation

w′ = (w2 + 1)(1 − w cot x)

that is subject to certain additional constraints. Although this equation is of Abelian
type, a closed-form solution is apparently not provided by the theory. But we can
show that the required solution must exist, which is not quite straightforward, due
to the additional requirements to be met.

From the bare existence, and from the functional properties of the differential
equation, we are able to derive that the solution of the differential equation above
leads to a competitive strategy whose factor equals 1.21218 . . ., and that no better
strategy exists. This will be shown in Section 5. The key step is in proving that
the curve implied by this strategy is convex. While the analysis of our strategy and
the proof for optimality are rather complicated and use means from the theory of
ordinary differential equations, the resulting strategy is surprisingly simple.

The problem can be generalized to the situation in which the robot’s starting
point, W , does not lie on a wall but in the free area outside the wedge. The problem
changes, because now the unknown angle ϕ can take on its values only in a smaller
range. In Section 6 we show how to construct an optimal competitive strategy for
each possible value of the angle, β, between the visible wall and the line through
the starting point and the corner. It turns out that the competitive factor is strictly
decreasing from c = 1.21218 . . . to 1.0, as β is increased. For β = π

2
= 90◦, for

example, the optimal factor is approximately 1.1261.
In Section 7, we will see a simple rule for the robot to compute the walking

direction for the optimal path. Furthermore, an easy-to-compute approximation is
given, whose competitive factor is only 3.1 % worse than the optimum.
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2 Simple Competitive Strategies

As shown in Figure 1, we place the corner at the origin of the coordinate system. The
robot’s starting point, W , lies on the negative y-axis at distance 1 from O.

Let ϕ be the angle between the invisible wall and the prolongation, M(π), of the
visible wall. The angle ϕ is between 0 and π. By a(ϕ) we denote the distance between
W and M(ϕ). As mentioned in the introduction, we have

a(ϕ) =

{
sinϕ : 0 ≤ ϕ ≤ π

2

1 : π
2
< ϕ ≤ π

Note that a is continuously differentiable.
A strategy for our problem is a curve that starts at point W on the visible wall

and leads to the prolongation of the visible wall. In fact, for each possible value of
ϕ there is a point on such a curve from where the other wall is visible, namely the
intersection with M(ϕ).

Let AS(ϕ) be the length of the path generated by strategy S between W and
the first point of intersection with M(ϕ). The competitive function, fS(ϕ), of S is
the ratio of AS(ϕ) and a(ϕ), and its competitive factor, cS , is the maximum value of
fS(ϕ).

fS(ϕ) =
AS(ϕ)

a(ϕ)
, cS = sup

ϕ∈(0,π]

fS(ϕ)

By fS(0) we mean limϕ→0 fS(ϕ), if it exists. The problem is to find a strategy whose
competive factor is as small as possible.

If a strategy reaches a halfline M(ϕ′) for the first time, turns back and eventually
reaches M(ϕ′) again then this part of the path can be cut off and replaced by a radial
line segment, improving on the strategy. Strategies including radial line segments can
in turn be approximated arbitrarily closely by strategies that can be described by a
system of polar coordinates about O.

Definition 1 A curve S =
(
ϕ, s(ϕ)

)
in polar coordinates about O is called a strategy

for the corner problem if the following holds.

(i) s is a continuous function on an interval [0, σ], where σ ≤ π.

(ii) On the open interval (0, σ), s is piecewise continuously differentiable and s′(0)
exists (possibly ±∞).

(iii) s(0) = 1.

(iv) If s(σ) 6= 0, then σ = π.

The last property states that S must arrive at M(π), including the corner.
First, we show that each sensible strategy is in fact competitive.

Lemma 2 Let S =
(
ϕ, s(ϕ)

)
be a strategy. Then S is competitive iff |s′(0)| < ∞.

The estimation
cS ≥

√
s′2(0) + 1

holds for the competitive factor.
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Proof. Since

AS(ϕ) =

ϕ∫
0

√
s′2(t) + s2(t) dt (1)

holds for the arc length of a curve in polar coordinates, we obtain from de l’Hospital’s
theorem (i. e. by taking derivatives in both numerator and denominator)

cS ≥ fS(0) = lim
ϕ→0

AS(ϕ)

sinϕ
= lim

ϕ→0

√
s(ϕ)2 + s′2(ϕ)

cosϕ
=

√
s′2(0) + 1

Since fS is a continuous function on the interval [0, σ], it takes on its maximum value.
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Figure 2: Simple strategies achieving competitive factors cS1 = π and cS2 = π
2
.

To give an example, consider strategy S1 that walks along the circle through W
with center in the corner, i. e. s1(ϕ) = 1 for all ϕ, see Figure 2. We have AS1(ϕ) = ϕ
and fS1(ϕ) = ϕ/ sinϕ for ϕ ∈ [0, π

2
], fS1(ϕ) = ϕ for ϕ ∈ [π

2
, π].

It is easy to check that fS1 attains its maximum at ϕ = π, thus cS1 = π ≈ 3.14159.
A better strategy, S2, is the following. We walk along the circle with radius 1

2

through W centered at the mid point between W and O, i. e. s2(ϕ) = cosϕ. Then
s2(

π
2
) = 0, i. e. we reach the corner, so we only need to consider the angles ϕ in the

interval [0, π
2
].

But AS2(ϕ) = 1
2
(2ϕ) holds, implying fS2(ϕ) = fS1(ϕ) for ϕ ∈ [0, π

2
]. The maximum

value is only π
2
≈ 1.5708.

Remark. It is interesting to observe that two quite different strategies, S1 and S2,
have nearly identical functions fS1 and fS2 .
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3 A Lower Bound

A simple lower bound is obtained in the following way, see Figure 3.

1
3

√
3

O

1
X

W

π
6

π
6

1
3

√
3

M(π
6 )

Figure 3: Deriving a lower bound.

We fix an angle of π
6

= 30◦, and on the ray M(π
6
) we mark the point X that has

distance 1
3

√
3 from the corner, O, as well as from W . Now we consider an arbitrary

strategy S.
It must, at some stage, arrive at M(π

6
). If it hits the line to the left of X then we

define angle ϕ to be almost π. So, the robot still has to walk at least to the corner,
and the length, AS(π), is at least as big as the distance from W to X plus the distance
from X to the corner, the shortest path being of length 1, which results in cS ≥ 2

3

√
3.

If the path hits the dotted line to the right of X then we let ϕ = π
6
, and the

path length, AS(π
6
), is at least the distance from W to X, whereas the shortest path

measures sin π
6

= 1
2
, which again comes to

cS ≥ fS(
π

6
) =

AS(π
6
)

1
2

≥ 2

3

√
3 .

So, we have a gap between the lower bound of 2
3

√
3 ≈ 1.1547 and the upper bound

of π
2
≈ 1.5708 of Section 2. In principle, it is not clear why it should always be possible

to close a gap like this. However, for this special problem there is in fact a strategy
whose competitive factor is provably optimal.
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4 A Differential Equation

Intuitively, if one tries to improve on a given strategy S by modifying it such that the
maximum value for fS(ϕ) becomes smaller, some other values fS(ϕ′) will increase.
The key idea towards an optimal strategy is to assume that this process can reach a
state of equilibrium, and to look for a strategy R such that fR(ϕ) = c, i. e. constant,
for all ϕ. This constant, c, would then be the competitive factor of the strategy. If
there is more than one strategy with this property, we would look for the one with
the smallest value of c.

Since a(ϕ) = sinϕ for ϕ ∈ [0, π
2
], we try to solve the following equation.

fR(ϕ) =
AR(ϕ)

sinϕ
= c for all ϕ ∈ [0,

π

2
] (2)

After inserting (1) of Lemma 2 into (2), multiplying the result by sinϕ, and taking
the derivative with respect to ϕ, we obtain

c cosϕ = A′
R(ϕ) =

√
r′2(ϕ) + r2(ϕ) (3)

This is an ordinary differential equation for the unknown function r, the initial
condition is r(0) = 1 because we have to start from W with angle ϕ = 0. Since we
want the robot to eventually arrive at the corner, the solution should exist on an
interval [0, σ] where r(σ) = 0 holds. For ϕ ∈ [0, σ) the radius r(ϕ) should be strictly
positive.

Some transformations of this equation are appropriate. First, we solve Equation 3
for r′(ϕ).

r′(ϕ) = −
√
c2 cos2 ϕ− r2(ϕ) (4)

The negative square root is taken because the solution y should be decreasing, mean-
ing that the robot should always come closer to the corner, as it moves along R. An
increasing function would be even worse than the circular strategy from Section 2.

Now we can eliminate the constant c from the equation by formally replacing r(ϕ)
by cu(ϕ). The initial condition changes to u(0) = 1

c
.

u′(ϕ) = −
√

cos2 ϕ− u2(ϕ) (5)

Since c is the competitive factor of the solution
(
ϕ, r(ϕ)

)
, our problem now looks

as follows.
Problem. Find the minimum c > 1, such that the ordinary differential equation (5)
has a solution on some interval [0, σ] ⊆ [0, π

2
] subject to the following constraints:

u(0) =
1

c

u(ϕ) > 0 for ϕ ∈ [0, σ)

u(σ) = 0

7



Any real valued solution must satisfy |u(ϕ)| ≤ cosϕ because of the square root
in (5). As we will see later, for c to be minimal, σ must be as large as possible,
i. e. σ = π

2
.

In the following, it will be shown that this heuristic approach works. In this
section, the existence of a solution of the above problem in which σ = π

2
, c ≈ 1.21218

is proven. Section 5 shows that this solution, R, is in fact optimal among all possible
strategies.

Remark. Equation 5 can be transformed into an equation of Abelian type.

w′(x) =
(
w2(x) + 1

)(
1 −w(x) cot x

)
(6)

However, there is no complete theory on equations of this type, and a closed-form
solution seems not to be known, see Kamke [6] or Murphy [9].

-
ϕ

π

2

cos ϕ

− cos ϕ

0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 4: Solutions of the differential equation for several initial values.

Figure 4 shows the numerical solutions u(ϕ) of Equation 5 in the domain 0 ≤ ϕ ≤
π
2
, |u(ϕ)| ≤ cosϕ. The polar coordinates

(
ϕ, u(ϕ)

)
of the solutions are represented in

a Cartesian coordinate system. Only the positive parts of the solutions have a meaning
in our original problem. The figure already suggests the existence of a solution of (5)
satifying u(π

2
) = 0, and a precise proof of this follows.

Let f(t, u) = −√
cos2 t− u2 be the right hand side of (5). Let D be the open

region {(t, u)|0 < t < π
2
, |u| < cos t}; f is defined on the closure of D. First, we study

(5) without the additional constraints stated in the problem. We parametrize those
solutions that intersect the abscissae in Figure 4 by their points of intersection.
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Lemma 3 For each ϕ ∈ (0, π
2
) there is a unique solution uϕ of Equation 5 with

uϕ(ϕ) = 0. The solution uϕ exists in an interval [0, kϕ] where ϕ < kϕ < π
2

and
uϕ(kϕ) = − cos kϕ.

Proof. The function f is continuously differentiable with respect to u and therefore
fulfills a local Lipschitz condition on y, i. e. for (t0, u0) ∈ D there is a neighbourhood
N ⊂ D of (t0, u0) and a constant L such that

|f(t, u) − f(t, u) ≤ L|u− u| for all (t, u), (t, u) ∈ N

From a main theorem of the theory of ordinary differential equations it follows
that, for any (t, v) ∈ D, Equation 5 with the initial condition u(t) = v has a unique
solution that extends to the boundary of D. In particular, we have a unique solution
uϕ for u(ϕ) = 0.

Let kϕ be the maximum value for which uϕ is defined. Since the function f is
strictly negative in D, the solution uϕ is strictly decreasing. Thus uϕ(kϕ) < 0, and

because
(
kϕ, uϕ(kϕ)

)
must be on the boundary of D, we have uϕ(kϕ) = − cos kϕ.

Assume that uϕ, on the left side of the vertical line through ϕ, does not extend
to t = 0. Then uϕ must hit the upper cosine wave. So there exists an l ∈ (0, ϕ) with
uϕ(l) = cos l and uϕ(t) < cos t for t > l. Then

0 =
√

cos2 l − u2
ϕ(l)

= u′ϕ(l) = lim
δ→0

uϕ(l + δ) − uϕ(l)

δ

≤ lim
δ→0

cos(l + δ)− cos l

δ
= − sin l

< 0

which is a contradiction. 2

Since u′ϕ(kϕ) = 0, we can extend uϕ to the whole interval [0, π
2
] by defining

uϕ(t) = − cos kϕ for t > kϕ

such that the extended function is continuously differentiable in [0, π
2
]. From now on,

we use uϕ for the extended function.

Lemma 4 There is a unique solution for Equation 5 with u(π
2
) = 0 which also

satisfies the constraints of the problem.

Proof. Let ϕn be a strictly increasing sequence converging to π
2
, for example ϕn =

π
2
− 1

n
, and, for brevity, let un = uϕn.

For some fixed t ∈ [0, π
2
], we consider the sequences un(t) and u′n(t). It follows

from the uniqueness of the solutions of Equation 5 that un and un+1 do not cross,
so un(t) is a strictly increasing sequence which is bounded from above by cos t. It is
then clear that u(t) = limn→∞ un(t) exists. In particular, we have u(π

2
) = 0.
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If t < π
2

we choose an n0 such that ϕn0 > t. Then we have un(t) > 0 for all n ≥ n0

and

u′n+1(t)− u′n(t) =
√

cos2 t− u2
n(t)−

√
cos2 t− u2

n+1(t)

=
u2

n+1(t)− u2
n(t)(√

cos2 t− u2
n(t) +

√
cos2 t− u2

n+1(t)
)

> 0

It follows that u′n(t) is a strictly increasing sequence for n ≥ n0 (but note that n0

depends on t). For t = π
2

we have the constant sequence u′n(
π
2
) = 0. In either case

u′n(t) is bounded since −1 ≤ f(t, u) ≤ 0. So the function g(t) = limn→∞ u′n(t) is
well-defined, independently of the choice of ϕn. In particular, we have g(π

2
) = 0.

The sequence of functions un is equicontinuous because of

|un(t)− un(t)| = |
t∫

t

u′n(s) ds| ≤ |t− t|

According to the theorem of Ascoli-Arzelà [14] and due to the monotonicity of un it
follows that un is uniformly convergent to u, hence u must be continuous.

Then the function g is continuous, too, because of

g(t) = lim
n→∞ u′n(t) = − lim

n→∞

√
cos2 t− u2

n(t) = −
√

cos2 t− u2(t)

For an arbitrarily small ε > 0, we consider the interval [0, π
2
− ε]. There exists an

n0 such that for n ≥ n0 all sequences u′n(t) are strictly increasing. Since the limit
function, g, is continuous, a theorem of Dini’s [1] applies and shows that u′n converges
uniformly to g. It follows from a well-known result from calculus that, on [0, π

2
− ε],

u is differentiable and u′ = g holds.

Since u′(t) = g(t) = −
√

cos2 t− u2(t), the function u is a solution of Equation 5

on [0, π
2
), but since any such solution extends to the boundary of D and u(π

2
) = 0,

the assertion follows. 2

Let u be the solution provided by Lemma 4. If we put r(ϕ) = c · u(ϕ), where

c = 1/u(0), we obtain a solution R =
(
ϕ, r(ϕ)

)
of our original Equation 4. By

construction, r(0) = 1, r(π
2
) = 0, and for each ϕ ∈ [0, π

2
], the ratio fR(ϕ) is the

constant c. The value of c has been determined to be approximately 1.21218, using
numerical methods.

The transformed curves depicted in Figure 5 correspond to the nonnegative so-
lutions shown in Figure 4. It is easy to see that R is optimal within the class of
strategies S that have constant ratio fS(ϕ).
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Figure 5: Solutions of Equation 4 corresponding to the curves in Figure 4, the thick
path represents the optimal solution.

5 The Optimal Strategy

Now we prove that strategy R, as described in the preceding section, is in fact optimal
among all competitive strategies for the corner problem.

Lemma 5 The strategy R =
(
ϕ, r(ϕ)

)
forms a convex curve.

Proof. We use the curvature formula of a curve in polar coordinates.

κ =
r2 + 2r′2 − rr′′

(r′2 + r2)
3
2

The curve is convex iff the curvature κ is strictly positive. The sign is determined by
the nominator. We use that r = c · u holds, where u is the solution of the differential
equation (5), from which we get u′ = −√

cos2 ϕ− u2 and u′′ = −u − sinϕ cosϕ/u′.
Hence,

r2 + 2r′2 − rr′′ = c2
(
u2 + 2(cos2 ϕ− u2) + u2 +

u

u′
sinϕ cosϕ

)

= c2 cosϕ
(
2 cosϕ+

u

u′
sinϕ

)

= c2 cosϕ
2 cosϕ

√
cos2 ϕ− u2 − u sinϕ√
cos2 ϕ− u2

=
c2 cosϕ

(
4 cos2 ϕ(cos2 ϕ− u2) − u2 sin2 ϕ

)
√

cos2 ϕ− u2
(
2 cosϕ

√
cos2 ϕ− u2 + u sinϕ

)

=
c2 cosϕ (4 cos4 ϕ− u2(1 + 3 cos2 ϕ))√

cos2 ϕ− u2
(
2 cosϕ

√
cos2 ϕ− u2 + u sinϕ

)

11



For ϕ ∈ [0, π
2
] we have that κ > 0 if and only if

0 < 4 cos4 ϕ− u2(1 + 3 cos2 ϕ)

u2 <
4 cos4 ϕ

1 + 3 cos2 ϕ

u <
2 cos2 ϕ√

1 + 3 cos2 ϕ

We call v(ϕ) = 2 cos2 ϕ/
√

1 + 3 cos2 ϕ the right hand side of the last inequality. It is
clear that 0 < v(ϕ) < cosϕ for ϕ ∈ (0, π

2
) and v(0) = 1 > u(0), v(π

2
) = 0 = u(π

2
). We

want to show that u(ϕ) < v(ϕ) for ϕ ∈ (0, π
2
).

Assume that u(ω) = v(ω) for some ω ∈ (0, π
2
). Then

u′(ω) − v′(ω) = −
√

cos2 ω − v2(ω) +
(4 + 6 cos2 ω) sinω cosω

(1 + 3 cos2 ω)
3
2

=
(3 + 3 cos2 ω) sinω cosω

(1 + 3 cos2 ω)
3
2

> 0

From u′(ω) > v′(ω), we conclude that u must cross v from below at any point ω ∈
(0, π

2
) where they intersect, hence at most one such point can exist. Let ψ ∈ (ω, π

2
),

and let q be a solution of Equation 5 such that q(ψ) = v(ψ). To ψ the same argument
as to ω applies, i. e. q crosses v from below, and this is the only intersection in
(ω, π

2
). Since q has to stay below u and above v in (ψ, π

2
) it follows q(π

2
) = 0. But

q(π
2
) = 0 = u(π

2
) contradicts the uniqueness of u stated in Lemma 4. 2

Theorem 6 The strategy R as described at the end of Section 4 is an optimal com-
petitive strategy for the corner problem.

Proof. Let S =
(
ϕ, s(ϕ)

)
be a strategy different from R.

We apply Lemma 2. If |s′(0)| = ∞ then S is not competitive.
Case 1. If s′(0) ≤ r′(0) = −√

c2 − 1 then

cS ≥
√
s′2(0) + 1 ≥

√
r′2(0) + 1 = c

In the remaining cases s′(0) > r′(0) holds. Then there exists an angle ψ such that
s(ϕ) > r(ϕ) for ϕ ∈ (0, ψ].
Case 2. There exists an angle χ ≤ π

2
such that s(χ) = r(χ) and s(ϕ) > r(ϕ) on (0, χ),

see Figure 6. Then AS(χ) > AR(χ), due to the convexity of R shown in Lemma 5.
Hence,

cS ≥ fS(χ) =
AS(χ)

sinχ
>
AR(χ)

sinχ
= c

Case 3. s(ϕ) > r(ϕ) for ϕ ∈ (0, π
2
]. Then cS is not less than the total arc length of

S, which is bigger than the length of S between ϕ = 0 and ϕ = π
2
, plus the length

of the line segment from
(

π
2
, s(π

2
)
)

to the origin. The length of this curve, in turn, is

bigger than AR(π
2
) = c, again by convexity of R; see Figure 6. 2
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Figure 6: Case 2 and Case 3 of Theorem 6.

6 The General Corner Problem

A more general corner problem results if the robot’s starting point, W , does not lie on
a wall but in the free area outside the wedge. As before, let the corner of the wedge
be at the origin, O, and let the distance between W and O be 1. Let β denote the
angle between the visible wall and the line from W to O, see Figure 7; the problem
from the previous sections is the one with β = 0. The problem becomes different,
because now the unknown angle ϕ can take on its values only in (0, π − β). This
restriction is known to the robot who “sees” then angle β. In this section it is shown
how to construct an optimal competitive strategy for each possible value of β.
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Figure 7: The general corner problem.

A strategy for the general corner problem with angle β is the same as a strategy
for the corner problem, see Definition 1, except that the curve needs only arrive at
M(π − β), and not at M(π).

To obtain a good strategy for values of β greater than π
2
, one could think of the

following. Varying the constant c in the initial condition u(0) = 1/c of the differential
equation (4), there is exactly one such c such that the solution of (4) stops at ϕ = π−β;
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this solution corresponds to one of the leftmost curves of Figure 5. The larger β is the
smaller the competitive factor c will be, and we have c ↓ 1 for β ↑ π. For β = 3

4
π, for

example, the corresponding curve is competitive with factor c ≈ 1.03059. But there
can not be a proof for optimality, analogous to Theorem 6, since these curves are not
convex at the end. And in fact, these strategies turn out to be not optimal. However,
there is the following observation.

Observation. For each β ∈ (0, π), there is a unique strategy, Rβ =
(
ϕ, rβ(ϕ)

)
, for

the general corner problem that has the following properties. (The competitive factor
of Rβ is called cβ, the competitive function is fβ.)

• The strategy is composed of two parts, one from 0 to some angle δβ ∈ (0, π−β],
and one from δβ to π − β.

• The first part of the curve has a constant competitive factor, i.e. fβ(ϕ) = cβ for
ϕ ∈ [0, δβ]. It is part of a solution of the differential equation (4) for c = cβ.

• The second part from δβ to π − β is a straight line segment perpendicular to
M(π − β).

• The function fβ takes on its maximum value also at the end, i.e. fβ(π−β) = cβ.

• The curve of Rβ is continuously differentiable and convex.

• The competitive factor cβ is decreasing to 1 as β increases to π.

A formal proof is not given here, but inspections with highly accurate numerical
solutions of the differential equation strongly indicate that such curves always exist.
See Figure 8 for an example with β = π
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Figure 8: The optimal strategy and the corresponding competitive function for β =
π
4

= 45◦.
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Theorem 7 For a fixed β ∈ (0, π), the strategy Rβ as described above is an opti-
mal competitive strategy for the general corner problem with angle β, assuming the
observation above holds.

Proof. The convexity of our strategy Rβ is essential, as well as the fact that it arrives
perpendicularly at M(π − β) and that fβ(ϕ) = cβ holds for ϕ ∈ [0, δβ] ∪ {π − β}.

The arguments are very similar to the proof of Theorem 6. Let S =
(
ϕ, s(ϕ)

)
be

a strategy different from Rβ .
We apply Lemma 2. If |s′(0)| = ∞ then S is not competitive.

Case 1. s′(0) ≤ r′β(0) = −
√
c2β − 1. This is identical to Case 1 of Theorem 6.

Case 2. There exists an angle χ ≤ δβ, i.e. on the first part of Rβ , such that s(ϕ) >
rβ(ϕ) on (0, χ) and s(χ) = rβ(χ). The arguments of Case 2 of Theorem 6 apply.
Case 3. There exists an angle χ > δβ, i.e. on the second part of Rβ , such that
s(ϕ) > rβ(ϕ) on (0, χ) and s(χ) = rβ(χ). Then the total arc length of S, AS(π − β),
is greater than the total arc length of Rβ , ARβ

(π − β), since AS(χ) > ARβ
(χ) due to

the convexity of Rβ , and the part of Rβ after χ is the straight line perpendicular to

M(π − β), i.e. the shortest path from the point
(
χ, rβ(χ)

)
to the line M(π − β), so

the part of S after χ can not be shorter.
Case 4. s(ϕ) > rβ(ϕ) for ϕ ∈ (0, π − β]. Then the total arc length of S is greater
than the total arc length of Rβ, due to the convexity of Rβ and to the fact that Rβ

arrives perpendicularly at M(π− β). To see this, concatenate both curves with their
reflections at M(π − β). 2

7 Conclusions

In the preceding sections, we have seen how the optimal strategies for the corner
problem look like. For practical applications one might prefer approximations given
in a closed form. For example, a good practical approximation Q for the optimal
solution for β = 0 is given by

q(ϕ) = (1 − sinϕ)
3
4

One can verify that cQ is only 3.1 % bigger than the factor c of the optimal strategy.
The ratio fQ(ϕ) takes on its maximum value 1.25 at ϕ = 0. Similar approximations
can be found for other values of β.

Although a formula for the optimal solution can not be given in a closed form, for
the robot there is a simple method for finding that path, see Figure 9. This answers
a question rised by S. Skyum. For the angle α between the tangent to the path at
the actual position and the line from the actual position to the corner, the identity
tanα = r

r′ holds. We can eliminate the derivative r′ from Equation 4 and obtain the
formula

α = arcsin
r

cβ cosϕ

which means that the robot can, at each time, calculate its walking direction α if
only the current distance to the corner r and the angle ϕ are known, as well as the
constant cβ which can be computed in advance. In particular, the length of the path
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W

1

ϕ
r

O
α

M(ϕ)

Figure 9: Tangent direction α can be computed on the way.

from the beginning to the actual position needs not to be known. For example, the

initial angle for ϕ = 0◦ and r = 1 is α = arcsin
1

cβ
. For β > 0, the robot follows that

rule only until the actual direction is perpendicular to M(π − β). At that point, it
should go straight, as we have seen in Section 6.
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