
Hyperbolic Dovetailing

David Kirkpatrick

University of British Columbia, Vancouver, Canada
kirk@cs.ubc.ca

Abstract. A familiar quandary arises when there are several possible
alternatives for the solution of a problem, but no way of knowing which,
if any, are viable for a particular problem instance. Faced with this un-
certainty, one is forced to simulate the parallel exploration of alternatives
through some kind of co-ordinated interleaving (dovetailing) process. As
usual, the goal is to find a solution with low total cost. Much of the exist-
ing work on such problems has assumed, implicitly or explicitly, that at
most one of the alternatives is viable, providing support for a competi-
tive analysis of algorithms (using the cost of the unique viable alternative
as a benchmark). In this paper, we relax this worst-case assumption in
revisiting several familiar dovetailing problems.

Our main contribution is the introduction of a novel process interleav-
ing technique, called hyperbolic dovetailing that achieves a competitive ra-
tio that is within a logarithmic factor of optimal on all inputs in the worst,
average and expected cases, over all possible deterministic (and random-
ized) dovetailing schemes. We also show that no other dovetailing strategy
can guarantee an asymptotically smaller competitive ratio for all inputs.

An interesting application of hyperbolic dovetailing arises in the de-
sign of what we call input-thrifty algorithms, algorithms that are de-
signed to minimize the total precision of the input requested in order to
evaluate some given predicate. We show that for some very basic predi-
cates involving real numbers we can use hyperbolic dovetailing to provide
input-thrifty algorithms that are competitive, in this novel cost measure,
with the best algorithms that solve these problems.

1 Introduction

You are trapped underground in a mine following a massive earthquake. While
there are many potential escape routes, you have no way of knowing how much
effort will be required to clear any one of them. You quickly realize the first
exploration strategies that come to mind might be poor choices for your partic-
ular situation. If it happens that all of the escape routes have about the same
amount of debris, then you may as well simply choose one and start digging. On
the other hand, if only a few of routes are viable, it makes sense to keep trying
all of the routes, more or less equitably, until one of these few is discovered.

Upon further reflection, you recognize that being trapped in this way is not
such an uncommon occurrence. Being more adept at thinking than digging, you
wonder if there are strategies that are arguably good, or even best, to adopt in
situations like this...

A. Fiat and P. Sanders (Eds.): ESA 2009, LNCS 5757, pp. 516–527, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Hyperbolic Dovetailing 517

1.1 Dovetailed Execution of Multiply-Viable Process Sets

Finding an escape route in a mine has much in common with problems that arise
in many computational settings where several possible avenues are available for
the solution of a problem but there is no way of knowing which, if any, are
viable (or adequately efficient) for a particular problem instance. Faced with
this uncertainty, we elect to simulate their parallel exploration through some
kind of co-ordinated interleaving (dovetailing) of their associated processes. The
goal, of course, is to find a solution with low total cost. (Examples include
geometric or graph search, the synthesis of hybrid algorithms based on a suite
of heuristics, and adaptive raising strategies.) Existing work on such problems
invariably makes the assumption that at most one of the processes is viable.
This provides support for a competitive analysis of algorithms (using the cost
of running the unique viable process alone as a benchmark). Algorithms with
optimal competitive ratios, based on variants of round-robin doubling search,
have been formulated for a large variety of such problems [2,6,8,9,10,13,16].

Competitive analysis was introduced to provide a more realistic alternative
to worst-case analysis, which in our setting would make all strategies equivalent
since each could, with sufficiently bad input, be forced to run an arbitrarily
long time. However, it is similarly unrealistic in many scenarios, including those
mentioned above, to adopt the worst-case assumption that at most one of the
underlying process is viable.

In this paper, we relax this assumption in revisiting some of these dovetailing
problems. Our contributions are of four types: (i) we formulate a natural notion
of intrinsic cost that provides a basis for a modified form of competitive analysis
that can be applied in this more general setting; (ii) we introduce a non-uniform
process interleaving technique, called hyperbolic dovetailing, that can be viewed
as a hybrid (or mixture) of a family of bounded depth-first strategies covering the
full spectrum between a pure breadth-first (i.e. round robin) and a pure depth-
first strategy, (iii) we prove that hyperbolic dovetailing achieves a competitive
ratio that is within a logarithmic factor of optimal on all inputs in the worst,
average and expected cases, over all possible deterministic (and randomized)
dovetailing schemes, and (iv) we prove that no other dovetailing strategy can
guarantee an asymptotically smaller competitive ratio for all inputs.

Our work was motivated, in part, by the need to develop efficient algorithms
in computational settings in which knowledge about the input is incomplete but
extendable. For instance, input numbers may initially be known only up to some
precision, and additional precision may be obtainable, but only at a high cost.
Here are two examples for such a scenario: 1) the input numbers are initially the
result of cheap measurements, and with further, more elaborate measurements
additional precision can be obtained; 2) the input numbers are produced bit
by bit by a computational process such as root-finding via bisection. In such
scenarios it is of interest to design algorithms that solve the problem using as
little total input precision as possible.

We show that the hyperbolic dovetailing technique can be applied to the
design of algorithms for certifying certain simple properties of a set of input

518 D. Kirkpatrick

numbers, with the goal of minimizing the number of input bits that need to
be examined by the algorithm, for each set of possible inputs. We refer to this
as the leading-input-bits-cost, or LIB-cost, of the algorithm. Algorithms whose
LIB-cost is “small”, in some quantifiable sense, relative to the intrinsic LIB-cost
for every input, are said to be input-thrifty algorithms.

1.2 Multi-list and Cow-Path Traversal Problems

The following multi-list traversal problem captures the essence of the mine-
escape-route search problem; it is a simplified version of other multi-process
dovetailing problems that we wish to study and, as such, it allows us to intro-
duce our strategies and analyses in their most basic setting. Let L be a given
multi-list, that is a sequence of m not-necessarily-finite-length lists. Let λi de-
note the length of the i-th longest list in L, so ∞ ≥ λ1 ≥ λ2 ≥ . . . ≥ λm. The
goal is to traverse at least one list to its end, while minimizing the total cost (the
number of list positions examined). In general, we assume that the (multi)set
of list lengths Λ = {λ1, λ2, . . . , λm} is not known to the strategy, and we do
worst-case or average-case analysis over the set of all multi-lists with associated
lengths set Λ (what we refer to as presentations of Λ). However, for the sake
of comparison, we also consider the the behaviour of strategies that know Λ
(so, they are not constrained to run efficiently, or even terminate correctly, for
multi-lists outside of this restricted class).

Our multi-list traversal problem bears a strong resemblance to what has come
to be known as the m-lane cow-path problem. An instance of the cow-path prob-
lem specifies a sequence of m rays (lanes) of unbounded length incident on a
common origin (crossroad). A goal (pasture) lies at some unknown distance d
from the origin along some (unknown) ray. The objective is to to formulate a
provably good strategy for an agent (cow) to reach the goal, starting from the
origin.

The cow-path problem was introduced by Baeza-Yates et al. [2] as a simple
graph-theoretic abstraction of search problems in the plane. It has been studied
in several variations including directionally dependent traversal costs, turnaround
penalties, shortcuts and dead-ends [6,8,12,13,15]. It has also been analysed in
terms of worst-case and average-case competitive ratio (using the distance d as
a benchmark), as well as in a game-theoretic framework [2,9,10,16,17,18].

Essentially the same ideas as those used in solving the cow-path problem have
been used in the synthesis of deterministic and randomized hybrid algorithms
with optimal (or near optimal) competitive ratios [1,9]. The setting is one in
which there are a number of basic algorithms which might (or might not) be
useful in solving some problem. The goal is to synthesize a hybrid algorithm
from these basic components by some kind of dovetailing process. In this context,
memory limitations may impose restrictions on the number of processes that can
be suspended at any given time (the alternative being a complete restart with
successively larger computation bounds).

As we have already suggested, the multi-list traversal problem provides a
natural generalization of the cow-path problem in which every ray leads to a

Hyperbolic Dovetailing 519

goal (perhaps arbitrarily far from the origin) Of course, the list traversal cost is
not the same as that employed in the cow-path problem; in particular, it does
not take into account the cost of re-traversal of paths. However, as we shall see
later, our multi-list traversal algorithm can be implemented in such a way that
the two traversal cost functions agree to within a small constant factor, without
increasing the total list traversal cost by more than a small constant factor.

1.3 Competitive Analysis

In order to formulate a compelling notion of competitiveness (in the spirit of
[19]) for our multi-list traversal problems, we need to specify some measure of
inherent complexity that permits us to distinguish easy from more difficult prob-
lem instances. The objective, of course, is to formulate adaptive strategies that
run relatively more efficiently on instances of relatively low inherent complexity.

One natural candidate is simply the length of the shortest list. Since this cor-
responds to the length of the shortest proof that some specified list has some
specified length, we refer to this as the minimum certification cost of the instance.
Clearly this provides a lower bound on the cost of any multi-list traversal strat-
egy, and is realizable by a strategy that knows (or correctly guesses) the identity
of the shortest list. It also coincides with the notion of inherent complexity that
underlies the competitive analysis used for the conventional m-lane cow-path
problem.

In general, however, traversal strategies must deal with uncertainty in both
the set Λ of numbers that correspond to the path lengths (and completely de-
termine the minimum certification cost) and the presentation of these numbers
as a sequence (that is their assignment to individual paths). For a given set Λ,
we specify the maximum-traversal-cost of an algorithm A for Λ, and then define
the intrinsic maximum-traversal-cost of Λ to be the minimum, over all algo-
rithms A that are only guaranteed to solve the problem for multi-lists that are
presentations of Λ, of the maximum-traversal-cost of A for Λ. These definitions
resemble refinements of competitive analysis (in particular, the so-called relative
worst order ratio) introduced to provide a more meaningful/sensitive analysis
for certain on-line algorithms [3,4,5,11]. (See [7] for a comprehensive overview of
these alternative measures.)

It turns out to be reasonably straightforward to specify the intrinsic maximum-
traversal-cost of an arbitrary input set Λ in this way. With this in hand, we do
competitive analysis of two types: (i) with respect to the family of algorithms that
are constrained to answer correctly only when the input multi-list is a presentation
of Λ (i.e. relative to the intrinsic maximum traversal-cost); and (ii) with respect
to the family of algorithms that are constrained to answer correctly only when its
input multi-list is a presentation of some input set Λ′ whose intrinsic maximum-
traversal-cost is the same as that of Λ.

In the former case, we show that our algorithms are competitive to within a
logarithmic factor. More precisely, for every set Λ, if ξ(Λ) denotes the intrinsic
maximum-traversal-cost of input set Λ, then our algorithm achieves maximum-
traversal-cost O(ξ(Λ) log min{ξ(Λ), |Λ|}). In the latter case, we show that our

520 D. Kirkpatrick

algorithms are competitive in maximum-traversal-cost to within a constant fac-
tor. We also develop similar results for average-traversal-cost.

Results that have striking similarities to those in this paper were presented by
Luby et al. [14] for the problem of minimizing the expected time to complete the
execution of Las Vegas algorithms (which can be viewed as an infinite sequence
of deterministic algorithms with unknown completion times).

2 Multi-list Traversal Strategies

Let Λ be a (multi)set of m (positive) list lengths, and let λi denote the ith largest
element of Λ, for 1 ≤ i ≤ m. We denote by L a generic presentation of Λ (that
is, a multi-list whose associated set of list lengths coincides with Λ).

2.1 Intrinsic Maximum-Traversal-Cost and Average-Traversal-Cost

We define the maximum-traversal-cost of some multi-list traversal strategy A
on Λ to be the maximum cost of A over all multi-list presentations of Λ. The
intrinsic maximum-traversal-cost of Λ, denoted ξ(Λ), is the minimum, over all
multi-list traversal strategies A of the maximum-traversal-cost of A on Λ.

Theorem 1. ξ(Λ) = min1≤i≤m iλi.

Proof. Consider any multi-list traversal strategy A that works correctly on all
presentations of Λ. Such a strategy specifies a sequence of traversal steps that
culminates in the discovery of the end of some list. At any point in time, up to
termination, the strategy has traversed the i-th list to some depth di. Provided
that d̂i, the i-th largest element of {d1, . . . , dm}, satisfies d̂i < λi, for 1 ≤ i ≤ m,
the strategy will have not terminated for at least one multi-list presentation of
Λ. Thus, at termination, we must have d̂i = λi, for some i, and d̂j ≥ λi, for all
j, 1 ≤ j < i. It follows that A must explore at least min1≤i≤m iλi list positions.

On the other hand, if iΛ = argmin1≤i≤miλi, then the strategy that ex-
plores lists to fixed depth λiΛ , in any sequence, will never explore more than
min1≤i≤m iλi list positions. ��

In the average case, where the average is taken over all presentations of the given
length set Λ, we can hope to get away with something considerably less than
the intrinsic maximum-traversal cost. We note that the average case behaviour
of any deterministic multi-list traversal strategy is realized as the expected be-
haviour of a two-phased randomized algorithm that first randomly permutes
the indices of the lists in the input multi-list and then continues in an entirely
deterministic fashion. Thus, a lower bound on the expected cost of any ran-
domized list-traversal strategy is also a lower bound on the average-case cost of
(deterministic) list traversal.

Consider first the fixed-depth traversal strategy (denoted FDT(d)), already
encountered, that explores the lists, one after another, to some fixed depth d,
stopping if and when some list is completely traversed.

Hyperbolic Dovetailing 521

Lemma 1. Strategy FDT(λk) solves the multi-list traversal problem, with av-
erage cost (over all presentations of Λ) at most λk(m + 1)/(m− k + 2).

Proof. By definition, at least m − k + 1 of the lists have length at most λk.
Since lists are explored to depth λk, it suffices to argue that, among all possible
permutations of the input lists (i.e. all possible presentations of Λ) the average
position of the first list with length at most λk is at most (m + 1)/(m− k + 2).
(Equivalently, this is the expected position of the first 1 in a random permutation
of a binary string of length m containing n− k + 1 1’s.) ��

Let īΛ = argmin1≤i≤n{λi/(m − i + 2)}. Then, assuming that Λ is known, a
strategy, namely FDT(λīΛ

), exists that solves the list traversal problem with
average cost at most mλīΛ

/(m− īΛ+2). Thus the intrinsic average-traversal-cost
of the list length set Λ, which we denote by ξ̄(Λ), is at most mλīΛ

/(m− īΛ + 2).
As it turns out, this bound is essentially tight:

Lemma 2. Any randomized multi-list traversal strategy B that terminates after
at most mλīΛ

/3(m− īΛ +2) steps on all presentations of Λ, fails with probability
at least one half on a random presentation of Λ.

Proof. Since an adversary is free to choose the least favourable list indexing, the
expected cost of strategy B, forced by an adversary, is at least that which is
required for a random permutation of the input lists. Hence, we can assume that
B behaves the same on all list orderings (without loss of generality, it begins by
randomly permuting the lists) and thus the i-th list has length λπ(i), for some
random permutation π.

Denote the expression mλīΛ
/(m− īΛ + 2) by cΛ. To prove the desired result,

it suffices to argue that any randomized list-traversal strategy that has been
modified to terminate after exploring at most cΛ/3 list positions, must fail (i.e.
not complete the traversal of any list) with probability at least 1/2. We note that
any such truncated list-traversal strategy can be interpreted as a probability
distribution over the set of all (deterministic) traversals where list i is traversed
to depth di and

∑
1≤i≤n di ≤ cΛ/3.

Because the list indices are assigned randomly, we can assume, without loss of
generality, thatd1 ≥ d2 ≥ . . . ≥ dm.Wewill argue that every such (d1, d2, . . . , dm)-
traversal fails with probability at least 1/2. Let Λ̂ = {λ̂1, . . . , λ̂m}, where λ̂i =
(m− i+ 2)cΛ/m, for 1 ≤ i ≤ m. Since λ̂i ≤ λi, for 1 ≤ i ≤ m, and ξ̄(Λ̂) = ξ̄(Λ), it
suffices to prove the result under the assumption that Λ = Λ̂. Furthermore, since
the strategy need only work for presentations of Λ, there is no loss of generality in
assuming that the strategy exploits the knowledge that all of the λi values are inte-
gral multiples of cΛ/m and thus the exploration depth values d1, d2, . . . , dm satisfy
di = kicΛ/m, for some integers k1 ≥ k2 . . . ≥ km ≥ 0.

Since
∑

i ki =
∑

i dim/cΛ ≤ m/3, it follows that ki = 0, for m/3 < i ≤ m.
Furthermore, since λj > di just when j < m − ki + 2, at least m − ki of the
lists have length greater than di. Thus, Pr(failure) =

∏m
j=1 Pr(λπ(i) > dj) ≥∏m

j=1

(m−j+1−kj

m−j+1

)
=

∏m/3
j=1

(m−j+1−kj

m−j+1

)
. If we relax the constraint that ki ≥ kj ,

522 D. Kirkpatrick

for i ≤ j, the expression
∏m/3

j=1

(m−j+1−kj

m−j+1

)
is minimized when km/3 = m/3 and

kj = 0, for j < m/3. Hence, Pr(failure) ≥ 1/2. ��

Corollary 1. The average cost of any deterministic multi-list traversal strategy,
over all presentations of Λ, is at least mλīΛ

/6(m− īΛ + 2), even if Λ is known.

Theorem 2. ξ̄(Λ) = Θ(mλīΛ
/(m− īΛ + 2)).

2.2 Competitive Ratio of Conventional Dovetailing Strategies

It is instructive to analyse the competitive ratios achieved by two familiar dovetail-
ing strategies applied to multi-list traversal. These correspond to the extremes of
uniformity in traversal of lists; breadth-first (usually called round-robin) traversal
explores all lists in a completely equitable fashion and depth-first traversal chooses
one list and explores it to its end.

Theorem 3. For both the maximum and average-traversal-costs, the competi-
tive ratio of breadth-first traversal is Ω(m) and the competitive ratio of depth-first
traversal is unbounded.

Proof. Suppose first that we have a multi-list whose associated length set Λ
consists of one finite value d and m−1 infinite (or arbitrarily large) values. In this
case, it is easy to confirm that the intrinsic maximum-traversal-cost of Λ, ξ(Λ),
satisfies ξ(Λ) = md and the intrinsic average-traversal-cost of Λ, ξ̄(Λ), satisfies
ξ̄(Λ) = Θ(d). This coincides with the familiar observation that an adversary can
“hide” the identity of the sole finite list until all other lists have been explored
to depth at least d. Breadth-first traversal achieves maximum-traversal-cost and
average-traversal-cost Θ(md), but depth-first traversal has an unbounded cost
in this case, for both maximum-traversal-cost and average-traversal-cost.

On the other hand, if we have a multi-list whose associated length set Λ
consists of m lists all of which have the same length d, then ξ(Λ) and ξ̄(Λ) are
both Θ(d) (despite the fact that the minimum certification cost d is the same
as in the previous example). In this case the intrinsic maximum-traversal-cost is
achieved by any depth-first traversal but breadth-first traversal has maximum-
traversal-cost and average-traversal-cost Θ(md). ��

2.3 Hyperbolic Dovetailing

We now introduce a novel multi-list traversal strategy that makes use of a tech-
nique that we call hyperbolic dovetailing. The strategy maintains an indexing of
all the list positions in the input multi-list and, in terms of this indexing, de-
fines a rank function on the next unexplored position of each list. The traversal
explores positions in order of increasing rank until some list is exhausted. In
general, the rank of the t-th position of the i-th list (in the input order) is just
the product ti. Thus if we view the list positions as points in the plane (where
the t-th position of the i-th list has coordinates (i, t)), the positions are examined
in the order encountered by a hyperbola t = c/i, for increasing values of c (see
Fig. 1(b)). This interpretation explains the term “hyperbolic dovetailing”.

Hyperbolic Dovetailing 523

d

(a) Bounded depth-first traversal (b) Hyperbolic traversal

Fig. 1.

Hyperbolic-Traversal

c ← 1;
repeat until some list is fully explored

for i = 1 to m
do continue exploration of list i up to depth �c/i�;

increment c;

2.4 Worst-Case Competitive Case Analysis of Hyperbolic Traversal

Here we argue that hyperbolic traversal is competitive, up to a logarithmic factor,
even against strategies that know the set of list lengths.

Theorem 4. The hyperbolic-traversal strategy solves the multi-list traversal
problem for a multi-list with associated length set Λ, with maximum-traversal-
cost O(ξ(Λ) lg min{|Λ|, ξ(Λ)}).

Proof. Suppose that the last list position explored in the hyperbolic traversal has
rank c. Then (i) c ≤ ξ(Λ), and (ii) the total number of list positions traversed is
O(c lg min{m, c}). Point (i) follows from Theorem 1. Point (ii) follows from the
fact that, according to our hyperbolic traversal, all of the explored positions in
each list have rank at most c and, since there are at most �c/t� positions of rank
at most c in the t-th list, the number of list positions explored is bounded above
by

∑m
t=1�c/t� ≤

∑min{m,c}
t=1 c/t ≤ c +

∫ min{m,c}
1

c
t dt = c(1 + ln min{m, c}). ��

Furthermore, the logarithmic competitiveness bound is the best that one could
hope for in a general strategy.

Theorem 5. Any deterministic list-traversal strategy that behaves correctly on
all multi-list presentations of length sets Λ satisfying ξ(Λ) = ξ0, must have
maximum-traversal-cost at least ξ0 ln min{|Λ|, ξ0}, on at least one such presen-
tation.

Proof (Sketch). We define a family of canonical input length sets Λ, with ξ(Λ) =
ξ0 and argue that any deterministic traversal strategy that explores fewer than
ξ0 ln ξ0 list positions must, in the worst case, fail to complete the traversal of at
least one presentation of some Λ in this family. ��

524 D. Kirkpatrick

2.5 Average and Expected Case Competitive Analysis of
Hyperbolic Traversal

We now turn to the average case behaviour of our hyperbolic multi-list traver-
sal strategy. As in the worst case, hyperbolic traversal is competitive, up to a
logarithmic factor, even against strategies that know the set of list lengths.

Theorem 6. The hyperbolic-traversal strategy solves the multi-list traversal
problem for a multi-list with associated length set Λ with average-traversal-cost
O(ξ̄(Λ) lg min{|Λ|, ξ̄(Λ)}).

Proof. Let T (j) = {δ(j)
1 , . . . , δ

(j)
m }, where δ

(j)
i = λj , for j ≤ i ≤ m and δ

(j)
i = ∞,

for i < j. By the monotonicity of average traversal cost, avg-trav-cost(Λ) ≤
min1≤j≤m avg-trav-cost(T (j)). Given this is suffices to prove that for the
hyperbolic-traversal strategy avg-trav-cost(T (j)) is O(ĉj ln ĉj), where ĉj = λjm/
(m− j + 1).

By the nature of T (j), any strategy discovers the end of a list at depth exactly
λj . But, since exactly j − 1 lists have length greater than λj , the probability
that the number of lists that need to be explored exceeds m/(m− j + 1) (which
happens just when the first m/(m− j + 1) lists all have length exceeding λj) is

just
(

j−1
m/(m−j+1)

)
/
(

m
m/(m−j+1)

)
<

(
j−1
m

)m/(m−j+1)
<

(1
e

)
.

Since the hyperbolic-traversal strategy explores �c/λj� lists to depth λj when
its traversal parameter has the value c, it follows that the event, denoted τt, that
it fails to terminate by the time its traversal parameter reaches tĉj has probability
at most

(1
e

)t
. As we have already seen, if τt holds, the total exploration cost is

O(tĉj lg(tĉj)). Thus, the total expected cost is
∑∞

r=−∞
∑2r+1

t=2r Pr(τt)tĉj lg(tĉj)) =
O(ĉj lg(tĉj)). ��
If we precede the hyperbolic traversal strategy with a step that randomly per-
mutes the indices of the input lists, we produce a randomized algorithm whose
expected cost coincides with the average cost of deterministic hyperbolic traver-
sal. This randomized hyperbolic traversal strategy, which works correctly on all
input list sets, is essentially optimal even among randomized list traversal strate-
gies whose only constraint is that they succeed with probability at least 1/2 on
multi-lists whose associated length sets Λ satisfy ξ̄(Λ) = ξ̄0, for some fixed ξ̄0.

Theorem 7. Any randomized list-traversal strategy that succeeds with prob-
ability at least 1/2 on all multi-list presentations of length sets Λ satisfying
ξ̄(Λ) = ξ̄0, must have expected cost at least cξ̄0 lg ξ̄0, for some fixed constant
c > 0, on at least one such presentation.

Proof (Sketch). We view a randomized algorithm as being a distribution over
deterministic strategies. Suppose that

∑
1≤i≤n di = ξ̄0 lg ξ̄0/3. We argue that

any (d1, d2, . . . , dm)-traversal, with d1 ≤ d2 ≤ . . . ≤ dm, will fail on at least
half of the presentations of at least half of the members of a family of canonical
input length sets Λ, with ξ̄(Λ) = ξ̄0. It follows that at least one of these sets will,
for at least half of its presentations, be incompletely traversed by deterministic
strategies whose total assigned probability is at least 1/2.

Hyperbolic Dovetailing 525

Corollary 2. Any deterministic list-traversal strategy that behaves correctly on
all multi-list presentations of length sets Λ satisfying ξ̄(Λ) = ξ̄0, must have av-
erage cost at least cξ̄0 lg ξ̄0, for some fixed constant c > 0, on at least one such
presentation.

3 Applications of Hyperbolic Dovetailing

3.1 Generalized Cow-Path Search and Hybrid Algorithm Synthesis

As discussed in the introduction, the multi-list traversal problem provides a well-
motivated generalization of cow-path search and hybrid algorithm synthesis. The
variations in search cost functions, while significant for the exact competitive
analysis of interest in the single goal versions of these problems, are essentially
negligible when we consider asymptotic competitiveness bounds. For example,
our lower bounds for multi-list traversal obviously still hold in the setting of cow-
path search (where search cost is counted for revisiting path locations) but our
hyperbolic traversal algorithm can be modified (by re-exploring a list only when
the hyperbolic rank function doubles its value from the preceding exploration)
so that the total search cost (counting revisits) can be assigned in such a way
that every explored location has O(1) charges. Thus all of our multi-list traversal
results carry over (with modified asymptotic constants) to these other problems.

Our results also extend to a slightly more general form of multi-list search in
which individual lists may contain zero or more goal locations and the objective
is to traverse at least one list to the location of its first goal. By truncating lists
at their first goal, this reduces to what we call the signed multi-list traversal
problem in which some lists are positive (i.e. they have a goal location at their
end) and some are negative (i.e. they terminate, if at all, in a dead-end). Signed
multi-list traversal provides a natural model of dovetailing processes that may
terminate without success.

3.2 Input-Thrifty Algorithms

In many natural problem settings the knowledge about the input is incomplete.
For instance, input numbers may initially be known only up to some precision,
and additional precision may be obtainable, but only at a high cost. In such
situations it is of interest to design algorithms that solve the problem using as
little total input precision as possible.

Our results on list searching provide a modest but non-trivial contribution
to the study of such algorithms, taking the extreme point of view that the
computation within such an algorithm is free, and the only cost incurred is the
number of input bits that need to be examined by the algorithm. Specifically, for
a given algorithm and input sequence, we define the leading-input-bits-cost, or
LIB-cost, for short, to be the number of input bits that the algorithm examines.
We are interested in input-thrifty algorithms, i.e. algorithms whose LIB-cost is
“small” in some quantifiable sense.

526 D. Kirkpatrick

We consider problems whose input is a sequence p1, . . . , pn of real numbers
in the half-open interval [0, 1). An algorithm can access each such number p =∑

j>0 p(j)2−j via its binary representation p(1), p(2), · · · , and this happens by
examining the bits p(j) individually in order of decreasing significance, i.e. an
algorithm can examine bit p(j) only after it has examined bits p(1) through p(j−1)

already. In practice, we will assume that each pi has a finite, although arbitrarily
long, representation (thereby guaranteeing finite cost for all inputs).

As a concrete application, suppose we are given a set of s numbers {p1, . . . , ps}.
Our goal is to determine if there exists a pair (pi, pj), such that pi �= pj . We
can map this to an instance of the multi-list traversal problem as follows: each
number pi is interpreted as a list of length λi, where λi = argmin{j | p(j)

i �= p
(j)
1 },

(that is the position of the most significant bit on which pi and p1 differ). It
should be clear that (i) if the input set contains at least two distinct numbers
then the associated multi-list contains at least one finite length list, and (ii) any
multi-list traversal scheme corresponds to an not-all-equal certification algorithm
in the LIB-cost model.

Note that any not-all-equal certification algorithm can be reformulated in such
a way that at least as many bits of input p1 are explored as any other input,
with at most a constant factor increase in the LIB-cost. (In effect this says that
in the LIB-cost model the cost of certifying not-all-equal is essentially the same
as certifying that some input number differs from one specific input, p1.) It
follows that competitive algorithms for multi-list traversal translate directly to
input-thrifty not-all-equal certification algorithms.

Acknowledgements

The author gratefully acknowledges helpful discussions concerning the material
of this paper with Rolf Klein, Robert Tseng, and especially Raimund Seidel.

References

1. Azar, Y., Broder, A.Z., Manasse, M.S.: On-line choice of on-line algorithms. In:
Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 432–440
(1993)

2. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. In-
formation and Computation 106(2), 234–252 (1993)

3. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11, 73–91 (1994)

4. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms.
ACM Trans. on Algorithms 3(2) (2007)

5. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to
paging. In: Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 718–727 (2005)

6. Demaine, E., Fekete, S., Gal, S.: Online searching with turn cost. Theoretical Com-
puter Science 361, 342–355 (2006)

Hyperbolic Dovetailing 527

7. Dorrigiv, R., Lopez-Ortiz, A.: A survey of performance measures for on-line algo-
rithms. ACM SIGACT News 36(3), 67–81 (2005)

8. Kao, M.-Y., Littman, M.L.: Algorithms for informed cows. In: AAAI 1997 Work-
shop on On-Line Search (1997)

9. Kao, M.-Y., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hybrid algo-
rithms. J. Algorithms 29(1), 142–164 (1998)

10. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An
optimal randomized algorithm for the cow-path problem. Information and Com-
putation 131(1), 63–79 (1996)

11. Kenyon, C.: Best-fit bin-packing with random order. In: Proc. 7th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 359–364 (1996)

12. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In:
Proc. 23rd International Colloquium on Automata, Languages and Programming,
pp. 280–289 (1996)

13. Lopez-Ortiz, A., Schuierer, S.: The ultimate strategy to search on m rays. Theo-
retical Computer Science 2(28), 267–295 (2001)

14. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
In: Proc. Second Israel Symposium on Theory of Computing and Systems, June
1993, pp. 128–133 (1993)

15. Papadimitriou, C.H., Yannakakis, M.: Shortest path without a map. In: Proc. 16th
International Colloquium on Automata, Languages and Programming, pp. 610–620
(1989)

16. Schonhage, A.: Adaptive raising strategies optimizing relative efficiency. In: Proc.
30th International Colloquium on Automata, Languages and Programming, pp.
611–623 (2003)

17. Schuierer, S.: Lower bounds in on-line geometric searching. Computational Geom-
etry: Theory and Applications 18(1), 37–53 (2001)

18. Schuierer, S.: A lower bound for randomized searching on m rays. In: Klein, R.,
Six, H.-W., Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598,
pp. 264–277. Springer, Heidelberg (2003)

19. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Comm. ACM, 202–208 (February 1985)

