Introduction to Computational Topology Summer semester 2018

Discussion: 13.06. - 15.06.

Prof. Dr. Rolf Klein Barbara Schwarzwald Institute of Computer Science I

Exercise Sheet 7

Exercise 7.1: Collapsing a d-simplex

Consider the example of collapsing a solid 3-dimensional simplex to a single point as given in the lecture. Prove that you can collapse any d-dimensional simplex to a single point by giving a description of the necessary sequence of deformations.

Exercise 7.2: Adding a simplex

In the spirit of incrementally computing β_p , there is another important method: Adding a simplex.

Let $K' = K \dot{\cup} \sigma$ from some simplex σ and let $\gamma := \partial'_k \sigma \in B_{k_1}(K', Q)$ with ∂ the boundary operator for K and ∂' the boundary operator for K'.

Prove the following theorem:

If γ has been a boundary (i.e. $\in \partial_k c_k(K, Q)$) already in K, then

$$\beta_p(K',Q) = \begin{cases} \beta_p(K,Q), \text{ for } p \neq k\\ \beta_k(K,Q) + 1, \text{ for } p = k \end{cases}$$

and else

$$\beta_p(K',Q) = \begin{cases} \beta_p(K,Q), \text{ for } p \neq k-1\\ \beta_{k-1}(K,Q) - 1, \text{ for } p = k \end{cases}$$

Exercise 7.3: Fundamental groups of simple spaces

Determine and compare the fundamental group of the following simple topological spaces:

- \mathbb{R}^2 , the euclidean plane
- S^2 , the sphere
- \mathbb{R}^2 with a point removed
- S^2 with a point removed

Can you generalize your observation to the relation between the plane/sphere with k point removed?

(4 Punkte)

(4 Punkte)

(4 Punkte)