
12 1. Discrete Event Spaces and Probabilities

When events are dependent, then knowledge about the occurrence changes the prob-
ability of the other. This is made clear by the definition of conditional probabilities.

Definition 1.9. Let (Ω,Pr) be a discrete probability space and let A,B ∈ 2Ω be events
with Pr(B) > 0. The conditional probability of A given B is defined as

Pr(A | B) = Pr(A ∩B)
Pr(B) .

The definition is consistent with our notion of independent events: If A,B ∈ 2Ω with
Pr(B) > 0 are independent, then

Pr(A | B) = Pr(A ∩B)
Pr(B) = Pr(A) ·Pr(B)

Pr(B) = Pr(A).

The occurrence of B does not influence the probability of A, thus the conditional
probability Pr(A | B) is just Pr(A).

Example 1.10. We continue Example 1.8. Events C and E are not independent. We
argued that E influences C because its occurrence ensures that we did not roll a 1.
Indeed, the conditional probability of C given E is greater than Pr(C):

Pr(C | E) = Pr(C ∩ E)
Pr(E) = (1/36)/(1/6) = 1

6 >
5
36 = Pr(C).

In Example 1.10, we computed the conditional probability from the data that we
are given by the modeling of our random experiment. However, if the conditional
probability of an event is part of the modeling, then we can use Definition 1.9 reversely
to compute Pr(A ∩B) or Pr(B). We see an example for that as well.

Example 1.11. Assume that we know the following facts about a group of people.

• In this group of people, 30% play the piano.
• Among the piano players, 90% like the composer Bach.
• Among the people that like Bach, 65% play the piano.

Question: How many people in the whole group like Bach?

We define the events B for ‘a person likes Bach’ and P for ‘a person plays the piano’.
From the data given to us, we know that Pr(P) = 0.3, Pr(B | P) = 0.9 and Pr(P |
B) = 0.65 (if we choose a person uniformly at random from the group). By the
definition of conditional probability,

Pr(B ∩ P) = Pr(P) ·Pr(B | P) = 0.27 and

Pr(B) = Pr(B ∩ P)
Pr(P | B) = 0.27

0.65 ≈ 0.42.

Thus, 42% of the people in this group like the composer Bach.

1.2. Independent Events & Conditional Probability 13

Now we want to reduce the error probability of our polynomial tester by repetitions.
Independent repetitions can be modeled by product spaces. Recall the definition of
product spaces from 1.6. A product space of two probability spaces can be used
to model two independent runs of an algorithm. We can verify that events that
correspond to different components of this product space are always independent.

Fact 1.12. Let (Ω1,Pr1) and (Ω2,Pr2) be discrete probability spaces and let (Ω,Pr)
be the product space. Then the events A × Ω2 and Ω1 × B are independent for all
choices of A ∈ Ω1 and B ∈ Ω2.

Notice that the definition of product spaces can be easily extended to products of
t copies. If (Ω1,Pr1), . . . (Ωt,Prt) are discrete probability spaces, then the product
space is defined by Ω = Ω1 × . . . × Ωt and Pr(x1, . . . , xt) = Pr1(x1) · . . . · Prt(xt).
Fact 1.6 and Fact 1.12 extend to this slightly more general case.

We will also see an example for an algorithm that is modeled with dependent runs.
Then we will use a conditional modeling in the design of the algorithm, so that we can
analyze it with conditional probabilities.

Application: Polynomial Tester (Part III: Multiple runs reduce error) We
return to our randomized algorithm with one-sided error for the scenario where a black
box answers whether f(x) and g(x) are equal for a given value x ∈ R, and where the
black box has no error. We observed that the error probability of the algorithm which
chooses one of t values for x uniformly at random is at most d/t. We extend this
algorithm. It now chooses n values x1, . . . , xn from {1, . . . , t} uniformly at random. It
is possible that the algorithm chooses the same value multiple times. If f(xi) 6= g(xi)
for at least one i ∈ {1, . . . , n}, then we output no, otherwise, we output yes. Let Ai be
the event that xi satisfies f(xi) = g(xi). We know that Pr(Ai) ≤ d/t, or, for t = 100d,
Pr(Ai) ≤ 1/100. The event that the algorithm fails is A1 ∩ . . . ∩ An. The events Ai
are independent because they correspond to different components of the product space
that models our independent runs. Thus, the failure probability is

Pr(A1 ∩ . . . ∩ An) = Pr(A1) · . . . ·Pr(An) ≤
 1

100

n.
This probability decreases exponentially in the number of runs, demonstrating the
power of independent runs for reducing the failure probability. Assume that we want
to decrease the failure probability below δ, i.e. we want (1

100)n ≤ δ. Solving this
inequality tells us that we need (log 1

δ
)/(log 100) independent runs to achieve this. For

example, reducing the failure probability to 1/100000000, we need 4 runs.

To make the events Ai independent, we had to allow that the randomized algorithm
chooses the same value for x more than once. We can decrease the failure proba-
bility further by dropping the independence of different runs, at the cost of a more
complex analysis. Assume that the algorithm picks xi uniformly at random from
{1, . . . , t}\{x1, . . . , xi−1} where we assume that n ≤ t. Define Ai as before, but notice

14 1. Discrete Event Spaces and Probabilities

that these events are no longer independent. We rewrite the failure probability by
using Definition 1.9:

Pr(A1 ∩ . . . ∩ An) = Pr(An | A1 ∩ . . . ∩ An−1) ·Pr(A1 ∩ . . . ∩ An−1).

Applying the definition of conditional probability iteratively, we get that

Pr(A1∩. . .∩An) = Pr(A1)·Pr(A2 | A1)·Pr(A3 | A1∩A2)·. . .·Pr(An | A1∩. . .∩An−1).

Let Pr(Ai | A1 ∩ . . . ∩ Ai−1) be one of the n factors. The condition A1 ∩ . . . ∩ Ai−1
means that we already chose i− 1 values, and all of them satisfied f(x) = g(x). Then
there are now i− 1 fewer values with this property available, and the probability that
xi is chosen as one of them is at most (d− (i− 1))/(t− (i− 1)). For t = 100d, we get

Pr(A1 ∩ . . . ∩ An) ≤
n∏
i=1

d− (i− 1)
100d− (i− 1) .

This term is always bounded above by (1/100)n. For n ≥ 2 it is strictly smaller, so
the error probability does indeed decrease when we avoid to choose the same values
more than once.

1.3 Applications

Our first applications were to test the equality of two polynomials in different settings.
Next, we see randomized algorithms for an important combinatorial optimization prob-
lem, the minimum cut problem. After that, we use our knowledge about discrete prob-
ability spaces to sample uniformly at random from an infinite stream of numbers. This
is an important subroutine for the development of data stream algorithms.

1.3.1 The Minimum Cut Problem

This section is solely devoted to one application, the (global) minimum cut problem.
For this problem, we want to cut a graph into (at least) two pieces (connected compo-
nents) by deleting as few edges as possible. Let G = (V,E) be an undirected graph.
We assume that n = |V | ≥ 2, m = |E| and that G is connected (otherwise, it already
has two connected components).

It is convenient to define a cut based on nodes instead of edges. So let S ⊂ V with
S 6= ∅ and S 6= V be a true subset of the nodes. To separate S from V \S, we need
to delete all edges that have one endpoint in S and one endpoint in V \S. That are
exactly the edges in the set δ(S) ⊆ E that is defined as follows:

δ(S) = {{u, v} ∈ E | u ∈ S, v /∈ S}.

We want to minimize the number of edges in δ(S).

1.3. Applications 15

Problem 1.13 (MinCut). Given a graph G = (V,E), the (global) minimum cut
(MinCut) problem is to compute a set S ⊂ V with S 6= ∅ and S 6= V that minimizes
|δ(S)|.

We discuss two randomized algorithms for this problem. Our motivation is two-fold:
Both algorithms are conceptually simple with short pseudo code descriptions. Addi-
tionally, the second algorithm is very efficient. Of course, deterministic algorithms
for the MinCut problem are also known, the best one achieving a running time of
O(nm+n2 log n), see [NI92] and [SW97]. For dense graphs (where m ∈ Θ(n2)), this is
O(n3). The second randomized algorithm that we learn about achieves a running time
of O(n2(log n)O(1/δ)), where δ is the desired error probability. This is asymptotically
faster.

Contracting edges Both algorithms are based on a contraction operation that we
name Contract-Edge(G, e). For an edge e = {u, v} this operation contracts e. It
replaces u and v by one node uv. Edges that had either u or v as an endpoint are
rerouted to uv, edges between u and v are deleted. The operation can create parallel
edges. Formally, this means that the algorithm works with multipgraphs where parallel
edges are allowed. In the following picture, one of the edges between 2 and 4 is
contracted:

1 2

43

1

2, 4

3

More precisely, the operation Contract-Edge(G, e) replaces a multigraph G by a
multigraph G′ = (V ′, E ′) with V ′ = V \{u, v} ∪ {uv} and E ′ := {{w, uv} | w /∈
{u, v}, {w, v} ∈ E ∨ {w, u} ∈ E} ∪ {{w, x} | {w, x} ∈ E,w, x /∈ {u,w}}.

Karger’s Contract Algorithm The first randomized algorithm was published by
Karger [Kar93]. It does n − 2 iterations. In every iteration, it contracts a random
edge. The edge is chosen uniformly at random from the edges that are still present.
Thus, parallel edges are important: If three parallel edges connect u and v, then u
and v are three times as likely to be merged than if only one edge connects them.

To describe the algorithm, we number the nodes arbitrarily, i.e. we assume that
V = {1, . . . , n}. Then we assign the label `(V) = {v} to node v for all v ∈ V . The
resulting graph with labels is the graph G0 = (V0, E0). Iteration i ∈ {1, . . . , n − 2}
now creates the multigraph Gi = (Vi, Ei). It chooses an edge e = {u, v} uniformly
at random from the edges in Gi−1 and calls Contract-Edge(Gi−1, e). It also sets the
label of the new node uv to `(u) ∪ `(v). We get the following pseudocode:

16 1. Discrete Event Spaces and Probabilities

Contract(G = (V,E))
1. For all v ∈ V : label v with `(v) = {v}
2. While |V | > 2:
3. choose e ∈ E uniformly at random, e = {u, v}
4. Contract-Edge(G, e) % creates node uv
5. Set `(uv) = `(u) ∪ `(v)
6. Let G = ({x, y}, E ′) be the current graph
7. Return `(x)

Every iteration reduces the number of nodes by one. The resulting graph Gn−2 has two
nodes, and the labels of the two nodes correspond to two disjoint subsets S1, S2 ⊂ V
with S1 ∪S2 = V . The algorithm outputs one of them (observe that δ(S1) = δ(S2), so
S1 or S2 are solutions with the same quality). The following picture shows an example
run of the algorithm. The dashed line is the edge that is contracted in the next step.

6

2

4

3

1

5

2

4, 6

3

1

5

2

3, 4, 6

1

5

2

3, 4, 5, 6

1

1, 2

3, 4, 5, 6

G0 G1 G2 G3 G4

In this example, the algorithm outputs {1, 2} or {3, 4, 5, 6}, and the value of this
solution is three because there are three edges between {1, 2} and {3, 4, 5, 6} (observe
that these three edges exist in G4, but also in G3, G2, G1 and the original graph G0).
Of course, this example only shows one possible outcome of the algorithm. Since the
edges are chosen uniformly at random, every cut is a possible output. However, not
all solutions are equally likely. Recall that a pair u, v is more likely to be contracted
if a lot of edges connect u and v. This increases the probability that we end up with
a good solution.

	I Randomized Algorithms
	Discrete Event Spaces and Probabilities
	Applications
	The Minimum Cut Problem

