
Chapter 4
Random Walks

A random walk in a graph is a process that moves between the vertices of the graph
in a random way. The graph can be described explicitly or implicitly, in the latter
case, the random walk might describe a process that changes its state every turn. We
start the chapter with two applications where k-SAT for k = 2 and k = 3 are solved
by local search based algorithms that can be analyzed by investigating random walks.

4.1 Applications

We analyze two algorithms whose analysis reduces to analyzing random walks on a
line graph. The second application is what we are really interested in, a local search
based algorithm for 3-SAT. The algorithm was developed and analyzed by Schön-
ing [Sch99, Sch02] for k-SAT. It is an elegant randomized algorithm that performs sur-
prisingly well. When it was developed, it was the fastest known algorithm for 3-SAT (of
its type, i.e. a randomized exact algorithm with a one-sided failure probability). It has
a running time of O(1.334n ·poly(n)). The currently fastest algorithm is a randomized
algorithm due to Hertli [Her14] with a running time ofO(1.30704n·poly(n)). Schönings
algorithm was derandomized by Moser and Scheder [MS11]. The best known deter-
ministic algorithm for 3-SAT is a derandomized version of an algorithm by Hofmeister,
Schöning, Schuler and Watanabe [HSSW07], done by Makino, Tamaki and Yamamoto
[MTY13]. The running time of this algorithm is O(1.3302n · poly(n)).

To understand the basic analysis principle, we first look at a similar algorithm for
2-SAT which was previously developed by Papadimitriou [Pap91].

The input to the k-satisfiability (k-SAT) problem is a Boolean formula that is the
conjunction of m clauses with at most k literals over n variables x1, . . . , xn. Recall
that a literal is either xi or xi and that a clause is the disjunction of at most k literals.
For example,

(x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x4

63



64 4. Random Walks

is a valid input to the 2-SAT problem. The k-SAT problem is to decide whether an
assignment a of x exists that satisfies the formula. The 2-SAT problem can be solved
in polynomial time. For k ≥ 3, the k-SAT problem is NP-hard [Kar72].

4.1.1 A local search algorithm for 2-SAT

Papadimitriou’s 2-SAT algorithm is given a 2-SAT formula φ over n variables x1, . . . , xn
and computes an assignment a. The algorithm starts with an arbitrary assignment
and then adjusts this assignment. In every step, it chooses an arbitrary clause C
that is not satisfied. In order to satisfy C, the assignment of at least one of the
two involved variables needs to be changed. Instead of deciding for one based on
the structure of φ, the algorithm chooses uniformly at random. Assume that φ is
satisfiable and that a∗ is an assignment that satisfies all clauses. Then both literals in
C have the inverse assignment compared to a∗, since C would otherwise be satisfied.
The algorithm chooses one of them uniformly at random and changes the assignment
of the corresponding variable. With probability at least 1/2, this increases the number
of variables whose assignment agrees with a∗ by one (the Hamming distance of a and
a∗ is reduced by one). With the remaining probability, the number of variables with
matching assignments decreases by one (the Hamming distance increases). The goal of
the algorithm is to agree with one satisfying assignment in all variables. The important
step is now to prove that this happens with high probability when the algorithm
does sufficiently many steps. The following pseudo code Rand-2-SAT(φ, t, a′) realizes
Papadimitriou’s algorithm. Here, φ is the input formula, t is a parameter that controls
the number of steps and a′ is a parameter that allows us to start the algorithm with
an arbitrary assignment.

Rand-2-SAT(φ, t, a′)

1. initialize the assignment a with a′

2. for i = 1 to t do
3. if a does not satisfy φ then
4. choose an arbitrary clause C in φ that is not satisfied by a
5. choose a literal in C uniformly at random and change its assignment
6. return “YES” if x satisfies φ, else return “NO”

The algorithm has one-sided error because it only returns YES if it finds a satisfying
assignment. If φ is not satisfiable, then it cannot find such an assignment and outputs
NO, which is correct in this case. If φ is satisfiable, then the algorithm is correct if it
finds a satisfying assignment, otherwise, it errs.

To analyze the failure probability of Rand-2-SAT in the case that φ is satisfiable, we
interpret the execution as a random walk. The graph is implicitly defined. It consists
of a node i for all i ∈ {0, . . . , n}, and node i represents the state that the current
assignment agrees with an (arbitrary but fixed) satisfying assignment a∗ in exactly
i variables. If n is reached, then the algorithm correctly outputs YES. If n is not



4.1. Applications 65

reached, it might still output YES because there could be other satisfying assignments.
For formulas with a unique satisfying assignment, the algorithm will err if the random
walk does not reach n. We thus analyze the probability that the algorithm reaches n
within t steps which is a lower bound on the success probability of Rand-2-SAT.

0 1 2 3 4 5
1 ≥ 1/2 ≥ 1/2 ≥ 1/2 ≥ 1/2

≤ 1/2 ≤ 1/2 ≤ 1/2 ≤ 1/2 ≤ 1/2

. . . n− 1 n

≥ 1/2 ≥ 1/2 ≥ 1/2

≤ 1/2 ≤ 1/2
1

The initial assignment is arbitrary, so the algorithm starts at an arbitrary node i. If
the state is 0, then flipping any variable increases the number of agreeing variables by
one. Thus, going from 0 to 1 has probability 1. If the state is n, then the algorithm
has found a∗, outputs YES and ends. Thus, once n is reached, it is never left. For all
other i ∈ {1, . . . , n − 1}, the algorithm chooses a clause C that is not satisfied. At
least one of the two involved variables is in disagreement with a∗. It is also possible
that both variables are assigned differently than in a∗. Thus, the probability to go to
i + 1 is either 1/2 or 1 (i.e. at least 1/2), and the probability to go to i − 1 is either
1/2 or 0 (i.e. at most 1/2).

Lemma 4.1. Let φ be a 2-SAT formula that is satisfiable. Let a′ be an arbitrary assign-
ment. Let Z be the number of steps until Rand-2-SAT(φ, t, a′) (run with sufficiently
large t) finds a satisfying assignment. Then E [Z] ≤ n2.

Proof. Let a∗ be an arbitrary but fixed satisfying assignment for φ. We analyze the
expected number of steps until Rand-2-SAT(φ, t, a′) finds a∗ under the assumption that
it never finds a satisfying assignment that is not a∗. This number is an upper bound
for the expected number of steps until the algorithm finds any satisfying assignment.

Based on a∗, we consider the random walk as discussed above. For all j ∈ {0, . . . , n},
let Zj be the number of steps that Rand-2-SAT(φ, t) needs to reach state n from state
j. Thus, Zj is random variable. Observe that Zj ≥ Zj′ for j ≤ j′, that Z0 = 1 + Z1
and that Zn = 0. For j ∈ {1, . . . , n − 1}, we argued above that Zj = 1 + Zj−1 with
probability at least 1/2 and Zj = 1 + Zj+1 with probability at most 1/2.

We define hj = E [Zj] as the expected number of steps needed to reach n from j.
Observe that proving maxj=0,...,n hj ≤ n2 proves the lemma. It is hn = 0 because Zn
is always zero. Furthermore, h0 = E [Z0] = E [1 + Z1] = 1 + E [Z1] = 1 + h1. For
j ∈ {1, . . . , n− 1}, we get the recurrence relation

hj = E [Zj] ≤
1
2(1 + E [Zj−1]) + 1

2(1 + E [Zj+1]) = 1 + 1
2 · hj−1 + 1

2hj+1.

(Remark: Since Zj ≥ Zj′ for j ≤ j′, we in particular have Zj−1 ≥ Zj+1). This means
that the term p(1+E [Zj−1])+(1−p)(1+E [Zj+1]) for p ≤ 1/2 is maximized for p = 1/2.
Thus, the first inequality holds). By induction, we show that for all j ∈ {0, . . . , n− 1}
it holds that

hj ≤ hj+1 + 2j + 1. (4.1)



66 4. Random Walks

For j = 0, it is h0 = h1 + 1 = h1 + 2 · 0 + 1. For j ∈ {1, . . . , n− 1}, we compute

hj ≤ 1 + 1
2 · hj−1 + 1

2 · hj+1
I.H.
≤ 1 + 1

2(hj + 2(j − 1) + 1) + 1
2 · hj+1

= 1 + 1
2hj + (j − 1) + 1

2 + 1
2 · hj+1.

We transform the inequality to obtain that

hj ≤ 1 + 1
2hj + (j − 1) + 1

2 + 1
2 · hj+1

⇔ 1
2hj ≤ 1 + (j − 1) + 1

2 + 1
2 · hj+1

⇔ hj ≤ 2(j − 1) + 3 + hj+1

⇔ hj ≤ 2j + 1 + hj+1

which proves inequality (4.1). This implies that

hj = hj+1 + 2j + 1 = hj+2 + 2(j + 1) + 1 + 2j + 1
= . . . = hn + 2(n− 1) + 1 + . . .+ 2j + 1

=
n−1∑
k=j

(2k + 1) ≤
n−1∑
k=0

(2k + 1) = n+ n(n− 1) = n2.

Thus hj ≤ n2 for all j ∈ {0, . . . , n− 1} which proves the lemma.

Lemma 4.1 says that the local search needs n2 steps on expectation to find a satisfying
assignment. We can ensure that a satisfying assignment is found with probability 1−δ
by running the algorithm for a sufficiently larger number of steps.
Theorem 4.2. If Rand-2-SAT(φ, t, a′) is called with a satisfiable 2-SAT formula φ,
a number t ≥ 2n2dlog2(1/δ)e and an arbitrary starting assignment a′, then it finds a
satisfying assignment with probability at least 1− δ.

Proof. We split the t steps into t′ = dlog2(1/δ)e phases of length 2n2. Let Ai be the
event that phase i fails, i.e. no satisfying assignment is found. The algorithm fails if
all events Ai occur for i ∈ {1, . . . , t′}. The probability that this happens is

Pr(A1 ∩ A2 ∩ . . . At′) =
t′∏
i=1

Pr(Ai | Ai−1 ∩ . . . ∩ A1)

which follows from the definition of conditional probability (compare our derivation
on page 14 in Section 1.2). The condition Ai−1 ∩ . . . A1 only means that phase i starts
in an assignment a′′ 6= a∗. Observe that phase i starting at assignment a′′ is identical
to calling Rand-3-SAT(φ, 2n2, a′′). Lemma 4.1 holds for any starting assignment, thus
the expected number of steps until an satisfying assignment is found in phase i is n2.
By Markov’s inequality, the probability that no satisfying assignment is found within
the 2n2 steps that the phase is long is bounded by 1/2. We get that

Pr(A1 ∩ A2 ∩ . . . At′) ≤
(1

2
)t′

= 1
2dlog2(1/δ)e ≤ δ.

Thus, the probability that the algorithm fails after 2t′n2 steps is at most δ.



4.1. Applications 67

4.1.2 Local search algorithms for 3-SAT

Schönings algorithm for k-SAT is not identical to the 2-SAT algorithm we saw above. It
has an additional spin. Before discussing it (for k = 3), we analyze the straightforward
generalization of Rand-2-SAT to 3-SAT. The resulting algorithm Rand-3-SAT(φ, t, a′)
again has the parameters φ for the input formula, t for the number of steps and a′ for
the initial assignment.

Rand-3-SAT(φ, t, a′)

1. initialize the assignment a with a′

2. for i = 1 to t do
3. if a does not satisfy all clauses then
4. choose an arbitrary clause C that is not satisfied by a
5. choose a literal in C uniformly at random and change its assignment
6. return “YES” if a satisfies all clauses, else return “NO”

The analysis of Rand-3-SAT for a satisfying instance φ differs from the analysis of the
algorithm Rand-3-SAT in one important aspect. The clauses in φ now have up to three
literals. For a not satisfied clause C and some fixed satisfying assignment a∗, it is now
possible that two of the involved variables agree with a∗ and the clause is still not
satisfied because a and a∗ disagree on the third involved variable. By choosing one of
the involved variables uniformly at random, the probability to increase the number of
agreeing variables by one can be 1/3, 2/3 or 1. Thus we are only guaranteed that the
probability is at least 1/3 and that the probability to decrease the number of agreeing
variables is at most 2/3. As for 2-SAT, we model the process by a random walk on a
line graph where vertex i represents the state that a and a∗ agree in i variables. As
before, being in vertex 0 means that the next change increases the number of agreeing
variables with probability 1, and being in vertex n means that the assignment is no
longer changed. For all j ∈ {1, . . . , n − 1, we just argued that we go to j − 1 with
probability at most 2/3 and to j with probability at least 1/3.

0 1 2 3 4 5
1 ≥ 1/3 ≥ 1/3 ≥ 1/3 ≥ 1/3

≤ 2/3 ≤ 2/3 ≤ 2/3 ≤ 2/3 ≤ 2/3

. . . n− 1 n

≥ 1/3 ≥ 1/3 ≥ 1/3

≤ 2/3 ≤ 2/3
1

Intuitively, we expect that the random walk is likely to go into the wrong direction.
However, since 3-SAT is NP-hard, we do not expect a polynomial algorithm. Even
waiting an exponential number of steps for a satisfying assignment can lead to an
algorithm that is good in our eyes. We apply the analytic technique we used in
Lemma 4.1 to Rand-3-SAT.
Lemma 4.3. Let φ be a 3-SAT formula that is satisfiable and let a∗ be an arbitrary
satisfying assignment. Let a′ be an assignment that agrees with a∗ in i variables. Let
Z be the number of steps until Rand-3-SAT(φ, t, a′) (run with sufficiently large t) finds
a satisfying assignment. Then E [Z] ≤ 2n+2 − 2i+2 − 3(n− i).



68 4. Random Walks

Proof. Observe that the lemma assumes that the random walk is in vertex i when we
start. Let Zj be the number of steps that Rand-3-SAT(φ, t, a′) needs to reach state n
from state j for all j ∈ {0, . . . , n}. Let hj = E [Zi] be the expected number of steps
needed to reach n from j. We are required to bound hi = E [Zi].

Again, Zj ≥ Zj′ for j ≤ j′, Z0 = 1 + Z1 and Zn = 0 hold. For j ∈ {1, . . . , n − 1},
Zj = 1+Zj−1 with probability at least 2/3 and Zj = 1+Zj+1 with probability at most
1/3. It is hn = 0 because Zn is always zero. Furthermore, h0 = E [Z0] = E [1 + Z1] =
1 + E [Z1] = 1 + h1. For j ∈ {1, . . . , n− 1}, we get the recurrence relation

hj = E [Zj] ≤
2
3(1 + E [Zj−1]) + 1

3(1 + E [Zj+1]) = 1 + 2
3 · hj−1 + 1

3 · hj+1.

This implies that hj ≤ 2n+2 − 2j+2 − 3(n − j) for all j ∈ {0, . . . , n} (exercise). The
lemma assumes that the algorithm starts in i, so the expected number of steps needed
until n is reached is bounded by 2n+2 − 2i+2 − 3(n− i).


	I Randomized Algorithms
	Random Walks
	Applications
	A local search algorithm for 2-SAT
	Local search algorithms for 3-SAT




