Institut für Informatik Prof. Dr. Heiko Röglin Dr. Melanie Schmidt

Randomized Algorithms and Probabilistic Analysis Summer 2016

Problem Set 12

Problem 1

Recall the following instance from problem set 11.

- 1. Give a short proof that choosing the costs of all five edges according to independent density functions $f_e : [0,1] \rightarrow [0,\phi]$ implies that the SSP algorithm converges in a constant number of steps for any integer T. Only use Property 8.9.
- 2. Give an even shorter proof that uses Property 8.9 and Corollary 8.3.
- 3. Extend your proof from 2. to arbitrary input graphs of constant size.

Problem 2

Let G = (V, E) be an undirected complete graph and let $c : E \to [0, 1]$ be a cost function that assigns a cost c_e to each $e \in E$. We consider the following problem, which we call *rooted* k-MST: Given G, a vertex $r \in V$ and a number $k \in \{1, \ldots, |V|\}$, find a tree in G that spans exactly k vertices, including r, and has minimal cost.

Let T = (V, E') be a tree in G. A pair of edges $\{e, f\}$ with $e \in E', f \notin E'$ is an *improving pair* iff $T \cup \{f\} \setminus \{e\}$ is a tree that contains r and $\Delta(e, f) := c_e - c_f > 0$. Consider the following algorithm for the rooted k-MST problem:

- 1. Start with an arbitrary tree T that spans k vertices, including r.
- 2. While an improving pair $\{e, f\}$ exists,
 - 2.1 remove e from T, add f to T.
- 3. Output T.

Assume that all c_e are ϕ -perturbed numbers (from [0, 1]). Analyze the expected number of iterations of this algorithm similarly to Theorem 9.4.