Institut für Informatik
Prof. Dr. Heiko Röglin
Dr. Melanie Schmidt

## Problem Set 9

## Problem 1

Suppose that we roll a standard fair dice seventeen times (independently). What is the probability that the sum is divisible by six? Use the principle of deferred decisions.

## Problem 2

Let $X_{1}, \ldots, X_{n}$ be independent random variables with density functions $f_{1}, \ldots, f_{n}$ and let $\lambda_{1}, \ldots \lambda_{n} \in \mathbb{R}_{+}$be arbitrary. Furthermore, let $f_{i}(x) \leq \phi$ for every $i \in\{1, \ldots, n\}$ and every $x \in$ $\mathbb{R}$. Give an upper bound for the probability of $\lambda_{1} X_{1}+\ldots+\lambda_{n} X_{n} \in[a, a+\varepsilon]$, where $a \in \mathbb{R}$ and $\varepsilon>0$ are fixed arbitrarily.

## Problem 3

The knapsack problem (given $n$ items, deterministic profits $p_{1}, \ldots, p_{n} \geq 0$, deterministic weights $w_{1}, \ldots, w_{n}>0$ and a capacity $W$ ) can be solved by an algorithm with running time $\mathcal{O}(n P)$ where $P=\sum_{i=1}^{n} p_{i}$ is the sum of all profits. Explain the algorithm. What does the existence of this algorithm mean for the complexity of the knapsack problem?

## Problem 4

Consider the following variant of the knapsack problem. Given $n$ objects with $\phi$-perturbed weights $w_{1}, \ldots, w_{n} \in[0,1]$, a capacity $W$ and profits $p_{1}, \ldots, p_{n} \in \mathbb{R}^{\geq 1}$, find a solution $x \in\{0,1\}^{n}$ that maximizes the product

$$
p(x)=\prod_{i: x_{i}=1} p_{i}
$$

of the profits of the chosen items under the constraint that $w^{t} x \leq W$.

1. Can Theorem 6.13 be applied to this variant?
2. If so, does that imply that the problem has a polynomial smoothed complexity? Can you give an algorithm for the problem with polynomial smoothed complexity?
