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Abstract
Let S be a set of n points in the plane that is in convex position. For a real number t > 1, we
say that a point p in S is t-good if for every point q of S, the shortest-path distance between
p and q along the boundary of the convex hull of S is at most t times the Euclidean distance
between p and q. We prove that any point that is part of (an approximation to) the diameter
of S is 1.88-good. Using this, we show how to compute a plane 1.88-spanner of S in O(n) time,
assuming that the points of S are given in sorted order along their convex hull. Previously, the
best known stretch factor for plane spanners was 1.998 (which, in fact, holds for any point set,
i.e., even if it is not in convex position).

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, G.2.2
Graph Theory, F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases points in convex position, plane spanner

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.25

1 Introduction

Let S be a set of n points in the plane. A geometric graph is a graph G = (S,E) with vertex
set S and edge set E consisting of line segments connecting pairs of vertices. The length (or
weight) of any edge (p, q) in E is defined to be the Euclidean distance |pq| between p and q.
The length of any path in G is defined to be the sum of the lengths of the edges on this path.
For any two vertices p and q of S, their shortest-path in G, denoted by δ∗G(p, q), is a path
in G between p and q that has the minimum length. We denote the length of δ∗G(p, q) by
|δ∗G(p, q)|. For a real number t > 1, the graph G is a t-spanner of S if for any two points
p and q in S, |δ∗G(p, q)| ≤ t|pq|. The smallest value of t for which G is a t-spanner is called
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the stretch factor of G. A large number of algorithms have been proposed for constructing
t-spanners for any given point set; see the book by Narasimhan and Smid [12].

In this paper, we consider plane spanners, i.e., spanners whose edges do not cross each
other. Chew [4] was the first to prove that plane spanners exist; in fact, this was the first
publication on geometric spanners. Chew proved that the L1-Delaunay triangulation of a
finite point set has stretch factor at most

√
10 ≈ 3.16 (observe that lengths in this graph

are measured in the Euclidean metric). In the journal version [5], Chew proves that the
Delaunay triangulation based on a convex distance function defined by an equilateral triangle
is a 2-spanner.

Dobkin et al. [7] proved that the L2-Delaunay triangulation is a t-spanner for t =
π(1 +

√
5)/2 ≈ 5.08. Keil and Gutwin [10] improved the upper bound on the stretch factor

to t = 2π
3 cos(π/6) ≈ 2.42. This was subsequently improved by Cui et al. [6] to t = 2.33 for the

case when the point set is in convex position. Currently, the best result is due to Xia [13],
who proved that t is less than 1.998.

Thus, the current best upper bound on the stretch factor of plane spanners is 1.998.
Regarding lower bounds, by considering the four vertices of a square, it is obvious that a plane
t-spanner with t <

√
2 does not exist. Mulzer [11] has shown that every plane spanning graph

of the vertices of a regular 21-gon has stretch factor at least 1.41611. Recently, Dumitrescu
and Ghosh [8] improved the lower bound to 1.4308 for the vertices of a regular 23-gon.

1.1 Our Results
In this paper, we consider plane spanners for point sets that are in convex position. Currently,
it is known that the stretch factor of any such spanner is less than 1.998. Moreover, the best
lower bound is 1.4308. We improve the upper bound to 1.88. Our approach is as follows.

Let S be a finite and non-empty set of points in the plane and assume that S is in convex
position. We denote the boundary of the convex hull of S by CH(S). For any two points
p and q in S, let δcwCH(S)(p, q) and δccwCH(S)(p, q) denote the clockwise and counter-clockwise
paths from p to q along CH(S), respectively, and let δ∗CH(S)(p, q) be the shorter one. Let
t > 1 be a real number, and let p and q be two points of S. We say that p is t-good for q in
S if |δ∗CH(S)(p, q)| 6 t|pq|. Observe that if p is t-good for q, then q is t-good for p. We say
that the point p ∈ S is t-good for S if p is t-good for all points of S. Define

t∗ = inf{t : each finite and non-empty set of points in the plane
that is in convex position has at least one t-good point}.

I Theorem 1. Let S be a finite and non-empty set of points in the plane that is in convex
position, and let t > t∗ be a real number. Then, there exists a plane t-spanner of S.

Proof. Consider algorithm PlaneSpanner(S, t) and the graph G = (S,E) that is returned
by this algorithm. Initially, B = S. This graph G is obtained by iteratively cutting an ear of
CH(B). Therefore, G is a plane triangulation of CH(S).

If |B| 6 3, then E is the set of edges of the convex hull of S. Thus, G is 1-spanner.
Assume |B| > 3. Consider one iteration of the while loop. Since t > t∗, there exists a t-good
point in B; let p be such a point that is chosen in line 4 of algorithm PlaneSpanner(S, t).
Let q and r be the two neighbors of p on CH(B). We add the edge (q, r) to E, and remove
the point p from B. See Figure 1(a). Since E contains the convex hull of B, it follows that for
any point p′ in B the shortest-path distance between p and p′ in G is at most |δ∗CH(B)(p, p′)|,
which is at most t|pp′|. Therefore, the graph G is a t-spanner of S. J

In order to apply this result, we need an estimate on the value of t∗:
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Algorithm 1 PlaneSpanner(S, t)
Input: A finite set S of points in the plane in convex position, and a real number t > t∗.
Output: A plane t-spanner of S.

1: E ← the set of edges of CH(S)
2: B ← S

3: while |B| > 4 do
4: p← a t-good point in B
5: q, r ← the two neighbors of p on CH(B)
6: E ← E ∪ {(q, r)}
7: B ← B \ {p}
8: return G = (S,E)

p

q

r

CH(B \ {p})
t-good point

Cα

wC(α)

(a) (b)

Figure 1 (a) The point p is t-good. The bold edges belong to G. (b) wC(α) in direction α.

I Problem. Is the value of t∗ finite? If it is, determine upper and lower bounds on t∗.

Our main result is a proof that
√

3 6 t∗ 6 1.88. In Section 2, we provide some
preliminaries. In Section 3, we prove that any point of S that is an endpoint of diameter
is 1.88-good. In Section 4, we consider an approximate diametral pair of S and prove that
both points in this pair are 1.88-good. Based on this, in Section 5, we show how to construct
a plane 1.88-spanner for S in O(n) time, assuming that the points of S are given in sorted
order along CH(S). Some further results are given in Section 6. Concluding remarks and
open problems are given in Section 7.

2 Preliminaries

For any two points p and q in the plane let pq denote the line segment between p and q, and
let R(p→q) denote the ray emanating from p and passing through q. For a point p and a real
number ρ > 0, let C(p, ρ) be the closed disk of radius ρ that is centered at p. For any two
points p and q in the plane let L(p, q) denote the lune of p and q, which is the intersection of
C(p, |pq|) and C(q, |pq|).

Let S be a finite and non-empty set of points in the plane. The diameter of S is the
largest distance among the distances between all pairs of points of S. Any pair of points
whose distance is equal to the diameter is called a diametral pair. Any point of any diametral
pair of S is called a diametral point.

I Observation 2. Let S be a finite set of at least two points in the plane, and let {p, q} be
any diametral pair of S. Then, the points of S lie in L(p, q).

SWAT 2016
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The following theorem is a restatement of Theorem 7.11 in [1].

I Theorem 3 (See [1]). If C1 and C2 are convex polygonal regions with C1 ⊆ C2, then the
length of the boundary of C1 is at most the length of the boundary of C2.

We also restate the following two-dimensional version of Cauchy’s surface-area formula.
For a closed convex curve C in the plane let wC(α) be the width of C in direction α; see
Figure 1(b).

I Theorem 4 (Cauchy [2]). The length |C| of the boundary of a closed convex curve C in
the plane is given by

|C| =
∫ π

0
wC(α) dα.

I Lemma 5. Let S be a finite set of at least two points in the plane that is in convex position,
and whose diameter is D. Then, for any two points p and q in S, |δ∗CH(S)(p, q)| 6

Dπ
2 .

Proof. Since CH(S) is a closed convex polygonal curve and the width of CH(S) in any
direction is at most the diameter of S, i.e. D, we have, by Theorem 4,

|CH(S)| =
∫ π

0
wCH(S)(α) dα 6

∫ π

0
D dα = Dπ.

Since p and q belong to CH(S), there are two edge-disjoint paths between p and q along
CH(S). The length of the shorter one, i.e. δ∗CH(S)(p, q), is at most Dπ

2 . J

I Lemma 6. Let t > 1 be a real number and let S be a finite set of at least two points in the
plane that is in convex position and whose diameter is D. Let p and s be any pair of distinct
points of S such that |ps| > Dπ

2t . Then t > π
2 and p is t-good for s.

Proof. Since the diameter of S is D, we have |ps| 6 D. Thus Dπ
2t 6 |ps| 6 D, which implies

t > π
2 . By Lemma 5, we have |δ∗CH(S)(p, s)| 6

Dπ
2 . Thus,

|δ∗CH(S)(p, s)|
|ps|

6
Dπ/2
Dπ/2t = t,

which implies that p is t-good for s. J

I Lemma 7. Let a, b, and c be three points in the plane, let β = ∠abc, and let t > 1 be a
real number. If β > 2 arcsin( 1

t ), then
|ab|+|bc|
|ac| 6 t.

Proof. Refer to Figure 2(a). Consider the triangle 4abc. Let ` be the bisector of β, and let
d be the intersection point of ` and ac. Let a′ (resp. c′) be the point on ` that is closest to a
(resp. c). We have |ab| = |aa′|/ sin(β/2) and |bc| = |cc′|/ sin(β/2). Thus,

|ab|+ |bc|
|ac|

= |aa
′|+ |cc′|

|ac| sin
Ä
β
2

ä 6
|ad|+ |dc|
|ac| sin

Ä
β
2

ä = 1
sin
Ä
β
2

ä 6
1

sin
(
2 arcsin( 1

t )/2
) = t. J

I Theorem 8. t∗ >
√

3.

Proof. Let S = {p, q, r, p′, q′, r′} be the set of six points in the plane and in convex position
as shown in Figure 2(b). The points p, q, and r are the vertices of an equilateral triangle of
side-length 1. The point p′ is placed in the middle of qr; q′ and r′ are placed analogously. The



M. Amani, A. Biniaz, P. Bose, J.-L. De Carufel, A. Maheshwari, and M. Smid 25:5

ab

c

d
a′

c′

β
2

`

β
2

p q

p′

r

r′

q′

(a) (b)

Figure 2 (a) Proof of Lemma 7. (b) Proof of Theorem 8.

p

q

s

D
Dπ
2t

p

q

s

D

r

α

β
D sin

(
π
9

) p′

p

q

sD

r

x

α

y

(a) (b) (c)

Figure 3 Illustration of the proof of Theorem 9.

two paths between p and p′ along CH(S) have lengths equal to 3/2. Moreover, |pp′| =
√

3/2.
Thus,

|δ∗CH(S)(p, p′)|
|pp′|

= 3/2√
3/2

=
√

3.

Therefore, for any ε > 0, p is not (
√

3 − ε)-good for p′, and vice versa. This implies that
none of p, p′, and similarly, none of q, q′, r, r′ is (

√
3− ε)-good for S. J

3 Diametral Points are Good

In this section we will prove the following theorem.

I Theorem 9. Let S be a finite set of at least two points in the plane that is in convex
position. Then any diametral point of S is 1.88-good for S.

Throughout the rest of this section, let t = 1.88. Let D be the diameter of S, and let
{p, q} be any diametral pair of S, that is, |pq| = D. We are going to show that both p and q
are t-good for S. Because of symmetry, it suffices to show that p is t-good. By Observation 2,
all points of S are in the intersection of C(p,D) and C(q,D); see Figure 3.

Let s be any point of S \ {p}. We are going to show that p is t-good for s. If s = q, then
as a consequence of Lemma 5, p is π

2 -good for s and, thus, p is t-good for s. Assume s 6= q.
Depending on |ps| we differentiate between the following three cases:
|ps| > Dπ

2t . By Lemma 6, p is t-good for s; see Figure 3(a).
|ps| < D sin

(
π
9
)
. Without loss of generality assume s is to the right of R(p→q). See

Figure 3(b). Let r be the intersection point of R(q→s) with the line that is perpendicular

SWAT 2016
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to pq and passes through p. Consider the path δccwCH(S)(p, s). Because of convexity, this
path is to the right of R(q→s) and to the right of R(p→s). By Theorem 3, we have
|δccwCH(S)(p, s)| 6 |pr|+ |rs|. Let α = ∠pqs and β = ∠prs = ∠prq. Let p′ be the orthogonal
projection of p onto R(q→s). Then sinα = |pp′|

|pq| 6
|ps|
|pq| = |ps|

D < sin
(
π
9
)
and, thus, α < π

9 .
This implies that β = π

2 − α >
7π
18 . Since t = 1.88, we have β > 7π

18 > 2 arcsin( 1
t ). Thus,

using Lemma 7, we have
|δ∗CH(S)(p, s)|

|ps|
6
|δccwCH(S)(p, s)|

|ps|
6
|pr|+ |rs|
|ps|

6 t,

which implies that p is t-good for s.
D sin

(
π
9
)
6 |ps| 6 Dπ

2t . Refer to Figure 3(c). Observe that if s is on pq, then p is
1-good for s. Without loss of generality assume s is to the right of R(p→q). Let r be the
intersection point of R(q→s) and the boundary of C(q,D). Consider the path δccwCH(S)(p, s).
Because of convexity, this path is to the right of R(q→s) and to the right of R(p→s). Note
that |δ∗CH(S)(p, s)| 6 |δccwCH(S)(p, s)|, and by Theorem 3 we have |δccwCH(S)(p, s)| 6 |rs|+ |Ùpr|,
where |Ùpr| denotes the length of the counter-clockwise arc on C(q,D) from p to r. In
order to prove that p is t-good for s it is sufficient to prove that
|rs|+ |Ùpr|
|ps|

6 t,

which is equivalent to

t|ps| − |rs| − |Ùpr| > 0. (1)

Let x = |ps|, y = |qs|, and α = ∠pqs. Notice that D sin
(
π
9
)
6 x 6 Dπ

2t , y 6 D, and
0 6 α 6 π

2 . By the law of cosines we have x2 = D2 + y2 − 2Dy cosα, which implies that

y = D cosα±
»
x2 +D2(cos2 α− 1).

For a fixed value of α, x is minimum when R(q→s) is tangent to C(p, x). This implies that
x > D sinα, and consequently α 6 arcsin

(
x
D

)
. Note that |rs| = D − y and |Ùpr| = Dα.

Thus, in view of Inequality (1) we have to show that

tx− |rs| − |Ùpr| = tx−
(
D −

(
D cosα±

»
x2 +D2(cos2 α− 1)

))
−Dα > 0, (2)

for all D sin
(
π
9
)
6 x 6 Dπ

2t and 0 6 α 6 arcsin
(
x
D

)
. Without loss of generality assume

that D = 1. Observe that in the range for x and α, the radicand in
√
x2 + cos2 α− 1 is

non-negative. Also, it is sufficient to show that Inequality (2) holds for the minus sign in
the ±. That is, it is sufficient to show that

tx− α− 1 + cosα−
√
x2 + cos2 α− 1 > 0, (3)

for all sin
(
π
9
)
6 x 6 π

2t and 0 6 α 6 arcsin(x).
In the full version of the paper we prove that Inequality (3) holds for t ≈ 1.879534 and
t < 1.88. This implies that p is 1.879534-good, and consequently 1.88-good for s. The
sketch of the proof is given in Section 4. In fact, in Section 4 we will prove a slightly
stronger result:

tx− α− (1 + 3 ∗ 10−4) + cosα−
√
x2 + cos2 α− 1 > 0

holds for t = 1.879534 and all sin
(
π
9
)
6 x 6 1.0001π

2t and 0 6 α 6 arcsin(x).
We can show that Inequality (3) holds for t = 1.879534 and 0 6 x 6 π

2t . However, we
considered x = |ps| 6 D sin

(
π
9
)
as a different case in order to unify the proof for Inequality (3)

with the proof for Inequality (4) that we will see in Section 4.
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4 Approximate-Diametral Points are Good

Let S be a finite set of at least two points in the plane that is in convex position. In Section 3
we proved that any diametral point of S is 1.88-good. In this section, we first present
an algorithm that computes an approximate diametral pair of S; this algorithm is due to
Janardan [9]. Then we show that the two points obtained by this algorithm are 1.88-good
for S. In Section 5, we use this algorithm to compute a plane 1.88-spanner in linear time.

Let c > 2 be an integer-valued parameter. We use a family of coordinate systems, Ci,
1 6 i 6 c, with orthogonal axes Xi and Yi, respectively, where X1 is horizontal and for
i = 2, ..., c, Xi makes an angle of π/c with Xi−1. For each i we refer to the pair of points with
minimum and maximum Xi-coordinates as the extreme pair in Ci. To find an approximate
diametral pair, we determine the Euclidean distance of the extreme pair in each Ci and report
the pair that is farthest apart. The following lower bound on the distance of the reported
extreme pair has been established by Janardan [9].

I Lemma 10 (see Janardan [9]). Let S be a finite set of at least two points in the plane that
is in convex position, and whose diameter is D. Let p and q be the pair of points obtained by
running the above algorithm on S. Then |pq| > sin

(
c−1
c

π
2
)
D.

In the rest of this section we will prove the following theorem.

I Theorem 11. Let S be a finite set of at least two points in the plane that is in convex
position. Let p and q be the pair of points obtained by running the above algorithm on S with
c = 112. Then both p and q are 1.88-good for S.

Throughout the rest of this section, let t = 1.88. Because of symmetry, we prove
Theorem 11 only for p. For each i ∈ {1, . . . , 112} and for each point s ∈ S, let Xi(s) be
the Xi-coordinate of s in the coordinate system Ci. Moreover, let li(s) be the line passing
through s that is parallel to Yi.

Let Cpq be the set of all coordinate systems in which p and q are the extreme pair. Note that
Cpq is not empty, because p and q are the pair of points reported by the algorithm, and hence
they are extreme pairs in at least one of the coordinate systems. Let Cpq = {Ci1 , . . . , Cim},
where 1 6 m 6 112. Note that for each j ∈ {i1, . . . , im} the points of S lie in the slab
between the two parallel lines lj(p) and lj(q). For each Cj , where j ∈ {i1, . . . , im}, let rj
be the point on lj(q) such that ∠prjq = π

2 , and let αj = ∠qprj ; observe that αj 6 π
2 . See

Figure 4.
Let k be an element of {i1, . . . , im} for which αk is minimum. Recall that all points of S

are in the slab between lk(p) and lk(q).

I Lemma 12. αk 6 π
112 .

Proof. The proof is by contradiction; thus, we assume that αk > π
112 . Without loss of

generality, assume lk(p), and consequently lk(q), are horizontal, p is below q, and q is to the
right of R(p→rk); see Figure 4. Let lp and lq be the lines that are perpendicular to pq and
pass through p and q, respectively. Observe that each of lp and lq makes angle αk with each
of lk(p) and lk(q). Since αk > π

112 , there is a coordinate system Ck′ ∈ {C1, . . . , C112} that is
different from Ck and for which lk′(p) (resp. lk′(q)) makes angle π

112 with lk(p) (resp. lk(q))
and angle αk − π

112 > 0 with lp (resp. lq). See Figure 4. We consider the following two cases.

All points of S \{p, q} are between lk′(p) and lk′(q). Then all points of S lie in the shaded
area in Figure 4(a). In this case p and q are the extreme pair in Ck′ . Thus Ck′ ∈ Cpq with
αk′ = αk − π

112 . This contradicts our choice of k.

SWAT 2016
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p

qrk

αk

lk(p)

lk(q)

lp

lq

αk

αk′

rk′
lk′(q)

lk′(p)

αk

π
112

p

qrk

αk

lk(p)

lk(q)

lp

lq

αk

αk′

rk′
lk′(q)

lk′(p)

s

s′

(a) (b)

Figure 4 Proof of Lemma 12.

There is a point of S \ {p, q} below lk′(p) or above lk′(q). Without loss of generality
assume there is a point of S \ {p, q} that is above lk′(q). See Figure 4(b). In this case
one of the extreme points of Ck′ , say s, is above lk′(q) and its other extreme point, say
s′, is on or below lk′(p). Note that s is different from q while s′ can be p. Observe that
|ss′| > |sp| > |pq|. This contradicts the algorithm’s choice of p and q as the farthest pair
among the extreme pairs of all coordinate systems C1, . . . , C112. J

Let D be the diameter of S. Recall that p and q are the pair of points that are returned
by Janardan’s algorithm. Let |pq| = d. By Lemma 10, we have

d > sin
Å111π

224

ã
D > 0.999901D,

and thus,

D < 1.0001d.

Note that all points of S are in the intersection of the two disks C(p,D) and C(q,D). See
Figure 5. Let s be any point of S. We are going to show that p is t-good for s. Depending
on |ps| we consider the following three cases:
|ps| > Dπ

2t . By Lemma 6, p is t-good for s.
|ps| < d sin

(
π
9
)
. Consider the coordinate system Ck. Recall that Ck belongs to Cpq, and

by Lemma 12 we have αk = ∠qprk 6 π
112 . Thus, q belongs to an interval [q1, q2] on lk(q)

such that ∠q1prk = ∠q2prk = π
112 and for each point q′ ∈ [q1, q2] we have ∠q′prk 6 π

112 .
Without loss of generality assume s is to the right of R(p→q). See Figure 5(a). Let r be
the intersection point of R(q→s) with lk(p). Consider the path δccwCH(S)(p, s). Because of
convexity, this path is to the right of R(q→s) and to the right of R(p→s). By Theorem 3,
we have |δccwCH(S)(p, s)| 6 |pr| + |rs|. Let α = ∠pqs and β = ∠prs = ∠prq. As in the
proof of Theorem 9, we have sinα 6 |ps|

|pq| = |ps|
d < sin

(
π
9
)
and, thus, α < π

9 . Since
∠qpr 6 π

2 + π
112 , it follows that β = π − α − ∠qpr > π − π

9 −
(
π
2 + π

112
)

= 383π
1008 . Since

t = 1.88, we have β > 2 arcsin( 1
t ). Thus, using Lemma 7, we have

|δ∗CH(S)(p, s)|
|ps|

6
|δccwCH(S)(p, s)|

|ps|
6
|pr|+ |rs|
|ps|

6 t,

which implies that p is t-good for s.
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p
lk(p)

lk(q)
q1 q2

r

s

α

β

d

q rk

p
lk(p)

lk(q)
q

p′

r
r′

s

x

α

C(p, d)

C(p,D) d

y

C(p,D)

Dπ
2t

(a) (b)

Figure 5 Proof of Theorem 11: (a) |ps| < d sin
(
π
9

)
, and (b) d sin

(
π
9

)
6 |ps| 6 Dπ

2t .

d sin
(
π
9
)
6 |ps| 6 Dπ

2t . In this case s is in the shaded region of Figure 5(b). Consider
C(q, d) and C(q,D); note that all points of S are in C(q,D). Without loss of generality
assume s is to the right of R(p→q). Let r and r′ be the intersection points of R(q→s)
with the boundaries of C(q, d) and C(q,D), respectively. Let p′ be the intersection point
of R(q→p) with the boundary of C(q,D). Consider the path δccwCH(S)(p, s). Because of
convexity, this path is to the right of R(q→s) and to the right of R(p→s). See Figure 5(b).
Thus, Theorem 3 implies that |δccwCH(S)(p, s)| 6 |pp′| + |p̃′r′| + |r′r| + |rs|, where |p̃′r′|
denotes the length of the counter-clockwise arc on C(q,D) from p′ to r′. Note that
|pp′| = |rr′| = D − d < 0.0001d. Let α = ∠pqs. Note that α is maximum when R(q→s)
is tangent to C

(
p, Dπ2t

)
. This implies that α 6 arcsin

(
Dπ
2td
)
< arcsin

( 1.0001π
2t

)
< 1. Thus,

|p̃′r′| = Dα < 1.0001dα = dα+ 0.0001dα < |Ùpr|+ 0.0001d,

where |Ùpr| denotes the length of the counter-clockwise arc on C(q, d) from p to r. Therefore,
we have

|δ∗CH(S)(p, s)| 6 |δccwCH(S)(p, s)| 6 |pp′|+ |p̃′r′|+ |r′r|+ |rs| < |rs|+ |Ùpr|+ 0.0003d.

In order to prove that p is t-good for s, it is sufficient to prove that

|rs|+ |Ùpr|+ 0.0003d
|ps|

6 t,

or equivalently

t|ps| − |rs| − |Ùpr| − 0.0003d > 0,

for all d sin
(
π
9
)
6 |ps| 6 Dπ

2t . Without loss of generality assume that d = 1, and thus,
D < 1.0001. In view of the proof of Theorem 9 it turns out that we have to prove that

tx− α− (1 + 3 ∗ 10−4) + cosα−
√
x2 + cos2 α− 1 > 0, (4)

for all sin
(
π
9
)
6 x 6 1.0001π

2t and 0 6 α 6 arcsin(x).
In the full version of the paper we prove that Inequality (4) holds for t ≈ 1.879534 and
t < 1.88. This implies that p is 1.879534-good, and consequently 1.88-good for s.
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To prove Inequality (4) we do the following. Let ε = 10−4. The goal is to find the smallest
value of t such that

tx− α− (1 + 3ε) + cos(α)−
»
x2 + cos2(α)− 1 > 0,

for all sin
(
π
9
)
6 x 6 (1+ε)π

2t , 0 6 α 6 arcsin(x). Note that for the left-hand side of the
inequality to be well-defined, we need x2 + cos2(α) > 1. Since x 6 (1+ε)π

2t , we can re-write

the constraints on α as 0 6 α 6 arcsin
Ä

(1+ε)π
2t

ä
= arccos

Ç…
1−
Ä

(1+ε)π
2t

ä2
å
.

Let u = cos(α). This problem is equivalent to finding the smallest value of t for which

f(x, u) = tx− arccos(u)− (1 + 3ε) + u−
√
x2 + u2 − 1 > 0, (5)

for all sin
(
π
9
)
6 x 6 (1+ε)π

2t ,
…

1−
Ä

(1+ε)π
2t

ä2
6 u 6 1 and x2 + u2 > 1.

1

1

x

u

(1+ε)π
2t

x2+u2=1

sin
(
π
9

)

√

1-
(
(1+ε)π

2t

)2

Thus we want to verify the validity of Inequality (5) in the shaded region of the above
figure. In the full version of the paper we show that for t ≈ 1.879534, f(x, u) > 0 in the
region defined by the constraints on x and u.

5 Algorithms

Let S be a set of n points in the plane that is in convex position. We assume that the points
of S are given in sorted order along CH(S). In this section, we describe how to construct a
plane 1.88-spanner on S in O(n) time.

By Theorem 9, any diametral point of S is 1.88-good for S. As discussed in the proof
of Theorem 1, by running algorithm PlaneSpanner(S, 1.88), a plane 1.88-spanner for S
is obtained. Specifically, we obtain this spanner by choosing, in line 4 of the algorithm, a
diametral point of S. Since the diameter of n points in convex position can be computed in
O(n) time, the algorithm runs in O(n2) time.

Note that in each iteration of the while loop in algorithm PlaneSpanner, we remove
one point from S. Thus, any deletion-only data structure that maintains the diameter of
S can be used here. In 2010, Chan [3] showed that the diameter of a fully dynamic point
set in the plane can be maintained in O(log8 n) expected amortized time. Based on that,
algorithm PlaneSpanner can be implemented to run in O(n log8 n) expected time.
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Recall that in Section 4, we presented an algorithm that computes an approximate
diametral pair of S. By Theorem 11, these diametral points are 1.88-good (assuming
c = 112). Based on this algorithm, we present a deletion-only data structure that maintains
an approximate diametral pair of S. For each i, 1 6 i 6 c, we store the points of Ci in a
doubly connected linked list, Li, in increasing order of their Xi-coordinates. The list Li can
be constructed in O(n) time by merging the two convex chains of the points between the
extreme pair in Ci. The list Li allows access to the extreme pair in Ci in O(1) time, via
explicitly-maintained pointers to the leftmost and rightmost nodes. For i = 1, . . . , c− 1 and
for each point p in Li, we store a cross pointer to the occurrence of p in Li+1. Moreover,
for any point p in Lc we store a cross pointer to the occurrence of p in L1. To delete a
point p from S, we delete p from each Li, 1 6 i 6 c. If we are given a pointer to p’s
occurrence in one list Li, then p can be deleted in O(c) time by following the cross pointers.
To answer a diameter query, we determine the Euclidean distance of the extreme pair in
each Li and report the pair that is farthest apart; this takes O(c) time. We use this data
structure, with c = 112, in line 4 of algorithm PlaneSpanner. Thus, each query takes
O(1) time and gives two pointers to the approximated diametral points. Using the cross
pointers, the approximated diametral points can be deleted in O(1) time. Thus, algorithm
PlaneSpanner can be implemented to run in O(n) time. Therefore, we have proved the
following theorem.

I Theorem 13. Let S be a set of n points in the plane that is in convex position. Assume
that the points of S are given in sorted order along the boundary of the convex hull of S.
Then a plane 1.88-spanner for S can be computed in O(n) time.

6 Remarks

1. There exists a point set in the plane and in convex position such that some of its diametral
points are not 1.868-good.
The figure below shows a point set S that contains the points p, q, r, s, p′ and many points
that are uniformly distributed on each of the arcs Ùqr and Ùrs.

p′q s

r
p

α
x

The points q, r, and s are the vertices of an equilateral triangle of side length 1. The
arc Ùqr (resp. Ùrs) has radius 1 and is centered at s (resp. q). The point p′ is placed on qs
and at distance x from q. The point p is placed on Ùrs such that ∠p′qp = α. Note that
0 < x < 1 and 0 < α < π/3. We will compute the exact values of x and α later. Note
that all points of S, except p′, are diametral points. Moreover |CH(S)| ≈ 1 + 2π

3 . We are
going to place p and p′ (or equivalently, choosing α and x) such that p is not 1.868-good
for p′, and hence it is not 1.868-good for S.
We place p and p′ such that the lengths of the two paths between p and p′ on CH(S) are
equal to |δ∗CH(S)(p, p′)| ≈ 1/2+π/3 and |pp′| is minimized. In this way, |δ∗CH(S)(p, p′)|/|pp′|
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is maximized. The length of the path δ∗CH(S)(p, p′) that is to the left of R(p→p′) is α+1−x.
Thus, α+ 1−x = 1/2 +π/3, which implies that x = α+ 1/2−π/3. By the law of cosines
we have

|pp′| =
√

1 + x2 − 2x cosα.

The value of α that minimizes |pp′| is the solution of the equation

(6α+ 3− 2π)(1 + sinα)− 6 cosα = 0,

which is α ≈ 0.897287. Thus, we choose α = 0.897287 and x = α+ 1/2− π/3. For these
values of α and x we have |pp′| ≈ 0.828153 and hence,

|δ∗CH(S)(p, p′)|
|pp′|

≈ 1.868.

Thus, the diametral point p is not 1.868-good for p′, and hence is not 1.868-good for S.

2. There exists a point set in the plane and in convex position such that none of its diametral
points is 1.75-good.
The figure below shows a point set S that contains the points p, q, r, p′, q′, and many
points that are uniformly distributed on the arc Ùpq.

p q

r′
r

p′q′

The points p, q, and r′ are the vertices of an equilateral triangle of side-length 1; note
that r′ does not belong to S. The arc Ùpq is centered at r′ and has radius 1. The point
r is placed at distance ε > 0 vertically above r′. Thus, p and q are the only diametral
points in S. Moreover, |CH(S)| ≈ 2 + π

3 . The point p′ (resp. q′) is placed on rq (resp.
rp) and at distance π

6 from r. Thus |δ∗CH(S)(p, p′)| = |δ∗CH(S)(q, q′)| ≈ 1 + π
6 . By the law

of cosines we have |pp′| = |qq′| ≈ 1
6
√

36 + π2 − 6π. Thus,

|δ∗CH(S)(p, p′)|
|pp′|

=
|δ∗CH(S)(q, q′)|

|qq′|
≈ 1.758.

This implies that p is not 1.75-good for p′, and q is not 1.75-good for q′. Therefore, none
of the diametral points of S is 1.75-good for S.

3. Intuitively, it seems that the point on the convex hull that has the smallest internal angle
with its neighboring points is a suitable candidate to be a good point. But this is not
true; the figure below shows a point set S that contains the points p, q, r, p′, q′, r′, and
many points that are uniformly distributed on each of the arcs q̂q′ and r̂r′.

p
q

r′

r

p′q′
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a(14, 7)

b(9.8, 12)

c(10.4, 13.2)

d(14, 15)
e(16.1, 14.5)

f(18.2, 12)

a

b

c

d
e

f

(a) (b)

Figure 6 (a) Delaunay triangulation. (b) The graph computed by algorithm PlaneSpanner
when it removes both points of a diametral pair in each iteration.

The point p is placed vertically below the midpoint of qr, and p′ is placed on the midpoint
of q′r′. Depending on the lengths of pr and pq, and on the distance between p and the
midpoint of qr, the value of |δ∗CH(S)(p, p′)|/|pp′| can be arbitrary large. Thus, for any
t > 1, we can select S such that p is not t-good for p′, and hence it is not t-good for S.

4. There are point sets in the plane and in convex position for which the plane graph
that is computed by algorithm PlaneSpanner has smaller stretch factor than the
Delaunay triangulation of the same point set. Consider the set S = {a, b, c, d, e, f} of
six points in Figure 6. Figure 6(a) shows the Delaunay triangulation of S whose stretch
factor is (|bc| + |cd| + |de| + |ef |)/|bf | ≈ 1.284. Figure 6(b) shows the plane graph
G obtained by algorithm PlaneSpanner when it removes both points of a diametral
pair in each iteration. The points b and f are the only diametral pair in S, thus,
in the first iteration ae and ac are added to G. In the next iteration a and d are
the only diametral pairs, thus, the edge ec is added to G. The stretch factor of G is
(|ae| + |ed|)/|ad| ≈ (|bc| + |ce| + |ef |)/|bf | ≈ 1.244. Note that there are point sets for
which the Delaunay triangulation has a smaller stretch factor than the graph that is
computed by algorithm PlaneSpanner.

5. The implementation of algorithm PlaneSpanner in Theorem 1 gives a simple (and
surprising) O(n)–time algorithm for computing the closest pair in a set of n points in
convex position: As discussed in Section 5, this algorithm computes a 1.88-spanner G
in O(n) time. It is well known that in any t-spanner, for any t < 2, the closest pair is
connected by an edge. Thus, given G, the closest pair can be computed in O(n) time.

7 Conclusions and Future Work

For a point set S in the plane and in convex position, we have shown that any approximate
diametral point of S is 1.88-good. Based on this, we obtained a plane 1.88-spanner for S in
O(n) time. We have proved that

√
3 6 t∗ 6 1.88. By solving Inequality (3) directly, or by

considering more coordinate systems in the approximate-diameter algorithm, we can show
that any (approximate) diametral point of S is 1.8792-good. This implies that t∗ 6 1.8792.
A natural problem is to improve any of the provided bounds. Another natural problem is to
extend algorithm PlaneSpanner to point sets that are not in convex position.
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