Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 332 (2005) 251—264

www.elsevier.com/locate/tcs

Online matching on a line
Bernhard Fuchs*!, Winfried Hochstattlet, Walter Kerrs

aCenter for Applied Computer Science Cologne, Universitit zu KoIn, Weyertal 80, D-50931 Koln, Germany
bpepartment of Mathematics, BTU Cottbus, Postfach 10 13 44, D-03013 Cottbus, Germany
CDepartment of Applied Mathematics, University of Twente, P.O. Box 217, NL-7500 AE Enschede, Netherlands

Received 1 January 2003; received in revised form 13 September 2004; accepted 11 October 2004
Communicated by A. Fiat

Abstract

Given asef§ C R of points on the line, we consider the task of matching a sequence, . . .) of
requests iR to points inS. It has been conjectured [Online Algorithms: The State of the Art, Lecture
Notes in Computer Science, Vol. 1442, Springer, Berlin, 1998, pp. 268-280] that there exists a 9-
competitive online algorithm for this problem, similar to the so-called “cow path” problem [Inform.
and Comput. 106 (1993) 234—-252]. We disprove this conjecture and show that no online algorithm
can achieve a competitive ratio strictly less than 9.001.

Our argument is based on a new proof for the optimality of the competitive ratio 9 for the “cow
path” problem.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Competitive analysis; Matching; Online algorithms

1. Introduction

We consider a special class of online server problems, where a number of servers (not
necessarily finite), located on the real line, is to serve a sequence of requests. ., ry €
R. In contrast to classical server problems (cf, €¢4]), however, each server can serve
at most one request. So the optimal offline solution is the minimum cost matching of the

* Corresponding author.
E-mail addressesbfuchs@zpr.uni-koeln.d@. Fuchs)hochstaettler@math.tu-cottbus (. Hochstattler),
w.kern@math.utwente.f\W. Kern).

1 Supported by Deutsche Forschungsgemeinschaft, Graduiertenkolleg Scientific Computing, GRK 192/5-02.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.10.028

http://www.elsevier.com/locate/tcs
mailto:bfuchs@zpr.uni-koeln.de
mailto:hochstaettler@math.tu-cottbus.de
mailto:w.kern@math.utwente.nl

252 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264

requests into the set of server positiond he problem is therefore also known asdiméine
matching problem on a lings]. As an application, consider a Bowling Center with bowling
shoes of sizes, so, ... at its disposal to meet requested shoe sizes, ... of entering
players.

An online matching algorithm ip-competitivef, after servingrs, ..., r; (t € N), the
current lengthL of the online matching constructed so far is at mesimes the current
optimal matching cost. It is a challenging open question to prove or disprove the existence
of p-competitive online algorithms with finite competitive rafio

For notational convenience, we consider a “universal” instance with infinitely many
servers, one at each integee Z. The lower bound op we shall derive is easily extended
(cf. Sectiond) to thefinite case, where there is only a finite number of servers given, say,
one at each integrale [— N, N] for sufficiently largeN, and requests, ..., r; € R (with
k<2N +1).

In the next section we will simulate the famous “cow path” problem, which is known
to have an optimal online algorithm with competitive ratio of19, with an instance for
the matching problem on a line. In Secti®mve present a new proof for optimality of this
competitive ratio. In SectioA we extend this result to a lower bound cf 8for the online
matching problem on a line with=0.001, contradicting a conjecture presentefbjrthat
a competitive ratio of 9 can be achieved. Our choice i not optimized but our method
does not seem to yield a significantly larger lower bound.

In [6] it is also suggested that generalized work function algorithms might perform well.
In Section5 we show that these algorithms have infinite competitive ratio.

2. The cow path problem

The authors dfi6] call the following problem “hide and seek”, but more ofteniitis referred
to as the “cow path” problem, interpreted as a cow trying to escape from the meadow and
looking for a hole in the fencfy]. Mathematically, the fence is represented by the real line
and the cow’s initial position is the origin. We are seeking for a path visiting eact?

(each possible location of the hole) after traveling a distance of at ptostSuch a path

is called go-competitive path (solution) to theliscret§ cow path problemAny such path
will without loss of generality first lead thy < 0O, then turn to the right until it reaches
I> > 0, turn again and move 3 < /1, and so on. Thus, such a cow path is completely
characterized by the sequence of its turning pdint®, 3, ... € Z.

The basic difficulty for an online algorithm for the matching problem on the line is to
decide which server to use for matching a new requédtere are essentially two choices:
Either the server_ thatis closest tofrom left or the serves,. that is closest to from right
(among those servers that are currently still unmatched). Indeed, seifvorg a server at
s < s_ can be interpreted as movisdo s_ and serving froms_.

The following request sequence forces any online algorithm for the matching problem
to simulate a “cow path”. The first two requests arejat r, = 0, and each subsequent
request is exactly at the position where a server has just been moved off to serve the previous
request. Assume thas is served fromy; = —1. In order to stay-competitive, the online
algorithm may first continue to serve a number of requests from left, but must eventually

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264 253

switchto serving some request= i < — 1 fromright, i.e. froms = 1. (Indeed|i| < p/2).

It may then continue to serve a number of requests from right, but eventually it will have to
switch again, serving some request j > 1 from left, etc. Thus the online algorithm for
such an instance is characterized by its turning p@ints, /3, . . . which can be interpreted

as a cow path.

Proposition 1. Any p-competitive algorithm for online matching on a line yieldypa
competitive algorithm for the discrete cow problem.

Proof. Consider a request sequence as described above that stops whenis used

as a server. Assume that our online algorithm produces a seqiengés, ..., [with

[; < Ofori odd andi > O for i even. The constructed online matching then has a cost
of |x| + 22;;1 [;, whereas the optimum matching costs fhith, |/;| + 1}, since serving

ro = 0 fromxrespl, £ 1, all the other requests can be matched at no cost. To see this, note,
that the request sequence consists of all integes 1 1, lx] resp.[lk, x — 1] where O is
requested twice. Obviously, the cost of the online matching equals the cost of a cow path
with turning pointdy, I2, I3, ..., . O

This analogy yields a lower bound pf>9 for the competitive ratio of any online algo-
rithm for matching on a line, cf1] or Section3.

For future purposes we, additionally, scale the above sequence and starkgrtgRiests
atr =0,41,+2, ..., +(mo — 1), 0. Now the second requestrat= 0 will be served, say,
froms = —mg. We then continue requesting exactly at the positions where a server has just
been moved off. We refer to such a request sequence@s aequenceith parametermy,
started ar = 0.

3. Cow sequences

Consider an online algorithm for the matching problem on a line and assume it has
already served requests, ..., r, € Z. We denote byL the (length of) the matching
constructed so far and refer to it as tharent travel length M* denotes the (length of)

the current optimal matching from = {r1, ..., r,} into Z. In addition, we introduce the
current matching MAssume that the online algorithm has served the currently known set
of requestsR = {r1, ..., r;} from serversS = {s1, ..., s;}. ThenM is the (length of) the

optimal matching fronSto R. We stress that, in general, this is different from biotand
M*.

As an example, consider a cow sequence as in Se2tmmd assume that the online
algorithm switches at = —i to serving from right and then continues serving mq, r =
mo+1,...,r = j — 1fromright. The current matching is then the assignmenty —
0,mo+ 1+ mo,...,j+— j—1(cf. Fig.1).

In the situation indicated in Figl we haveM = j, L = 2i + j and, assuming that
Jj > i, M* =i+ 1. In our figures, we indicate unused serversobyote, that always
M1 = mg and, in terms of turning poinfts, Io, . .. of a cow path we havgV; ;1| = |I;| + 1
fori =21,2,....

254 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264

M
Lo s j

Fig. 1. The current matching (mq = 1).

L I2
Il Ml
o o o o o -« o0 o o o o o
M2
0 0 O 0 G o o
M3
))

Fig. 2. A cow path and corresponding current matchihgs

We use current matchings to analyze the behaviour@tampetitive algorithm for the
matching problem (and provide a new proof for the lower bopid on cow sequences).
When the online algorithm serves a cow sequence, wéfjetk > 1, denote the current
matching immediately after tHeh switch (cf. Fig.2).

Proposition 2. After the kth switchwhen the current matching iy, the online algorithm
has travelledL, = 2/1 +mg = 2M» + My, — 2if k = 1 and

k—1
Ly =23 M;+3M + 2My 41 — 2k, for k>2. 1)
i=2

Proof. Fork>2, Ly =2 i+ My =2 (Zf‘izl M; — 1) + My and the claim follows.
O

The standard online algorithm for serving cow sequences is based dauhbéng tech-
nigue switching between left and right so that; = 2M;_1 holds fork>2. This in
particular guarantees that, after each switch, the current matshieg M, is the current
optimal assignmen¥* = M;* (andM stays optimal until it exceed¥1). Furthermore,
by induction we have

Ly = 9M; — AM, — 2k 2
implying
Corollary 3. The doubling technique is 9-competitive for serving cow sequences

To see that factor 9 is best possible, consider an arbitrary online algorithm for serving
cow sequences, producing current matchimgsand travel lengthg ;. after thekth switch.
Let o, andoy be such that

Ly=0O—-0ooM, and Miy1 = 1+) My. (3

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264 255

Remark 4. The doubling technique would correspondso= 1, k> 1. In general only
ox > —1 holds by definition, thusy, may be negative, ant{ is not guaranteed to be the
current optimal assignment for &> 1. For a 9-competitive algorithna,> 0 indicates the
current “length credit” (relative to the curreli) ando can be interpreted as the “credit we
have gained by exploring a region of side+ «) M on the opposite side”. In this sense the
potential defined below may be interpreted as a kind of “total current credit”.

We introduce theotential
& = oy + 20, k>1.

In the following we derive a recursion fab;, showing that any9 — ¢)-competitive
algorithm would yield®; — —oo, contradictings >0 anda > —1.
Our recursion starts as follows:

My +2My — 2 2 2
P1=9— —— < 421 =6+—=6+—~6
1 My + 201 -I—Ml +m0
and
3Mo+2M3 — 4

4

D=9
M; M

assumingng is chosen sulfficiently large.
Furthermore, observe that apycompetitive algorithm must necessarily produce expo-
nentially growingM;'s in the following sense.

Lemma 5. Any p-competitive algorithm must satisfy
(1) Mi2rp) 2 2M,

(2) M <5M;_1.

Proof. AssumeM; 21,1 <2M and consider the situationimmediately afterthe- 2[p])th
switch. Then

k+2[p1-1
Liyorp =2 Zz M; + 3Mpi21p1 + 2Mi21p141 — 2k
=

[p1-1 [p1-1
=2) Mpy2i22 M
i=0 i=0
> [pIMi+27p15
contradictingo-competitiveness.

By Propositior2 for k >3 we havel;_1 > 3M;_1 + 2M; implying the second assertion.
O

The first inequality of the previous lemma implies thgt (and eveny_ M%) can be

made arbitrarily small by an appropriately large choice:gf The second inequality gives
a rough upper bound of; as follows.

256 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264

Lemma 6. For k>3
2
Dy <4 — —, (4)
P

for mg sufficiently large

Proof.
(9—0K)My = Ly > 2My—1+ 3My + 2(1 + o) My — 2k
4
> <— + 5) My + 204 M, — 2k.
0

Dividing by M, yields

4 2k 2
P<b——+— <4-Z=
P Mg p

for mo sufficiently large. O
Next we derive the recursion fdb;.

Lemma 7.

2(1 — o)?
with 4, = ok T2 = o)”

Dpp1 =P — A +
* k+1 1+ oy

(5)

Proof. We compute from Propositiohthat
(9= ok+1)Mik1 — (O — ox) My = L1 — Ly = 2My12 + Myy1 — My — 2.

SubstitutingM+1 = (L 4+ o) My, Mi+2 = (L4 og1)(1 + o) My and dividing by M,
gives

2
(k41 + 200 41) (L + o) = 6oy + 0 — 2+ A
k

2
= (0k + 204) (1 + o) — (ouox + 2(1 — o)?) + o
k

Dividing by 1+ oy yields the recursion. [J

Remark 8. The exponential growth rate of thi;’s ensures thad Mik can be made
arbitrarily small, so that the updat®, .1 = @; — 4; would give approximately corre@®
values.

Itis now easy to see that(@ — ¢)-competitive algorithm for serving cow sequences (and
hence, a fortiori, for matching on a line) cannot exist. Such an algorithm would maintain
or=>¢ > 0. This implies

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264 257

Lemma 9. If g, >0 we haved, > %ak. If, furthermore o, >¢ > Ofor all k then

Ar>3e > Ofor all k.

Proof.
y 10_ _ OCkO'k—i-Z(l—O(k)z 16
KT3% T 1+ o 37k
B %ockak + %ak(ock — 1)+ 21— o)
- l—l—ock ’

Since the minimum of the denominator of the fraction in the last line, for giyernO0, is
attained aty = 1 — %oy, the claim follows. O

So the updateb; 1 = &, — A, and, according to Remai& &1 = & — A; +
ﬁ, would yield limy_ o ®x — —oo, whereas®; = oy + 20 =& + 2(—1) must
hold, a contradiction. Our approach also reveals that any 9-competitive algorithm must
asymptotically follow the doubling technique when serving a cow sequence.

Theorem 10. Any online algorithm for matching on a line that scompetitive for cow
sequences produces, o With limy_, oo o = 0andlimy_, o o = 1.

Proof. By Lemma9 ¢} > 0 for all kimplies that4; >0 in Lemma7 and further,Zj >4
must converge to zero >ends toco. This can only happen when — 1 ando; — 0.
O

The main difficulty in analyzing9+ ¢) competitive algorithms serving a cow sequence is
due to the fact that < 0 and hencel < 0 may occur, causing @ncreaseof the potential.
The following lemma boundgl from below and gives sufficient conditions fdr being
significantly positive.

Lemma 11. Fora(9+¢)-competitive algorithm serving a cow sequence wigtsufficiently
large and0<e < %1 we have in iteratiork >3

(1) 4= — e,

2 u<1-3/e= A@?

3) Pr<2-2/c = Ak21—68.

Proof. By Lemma6 we have fok >3: @, < 4— 52 <4—£.Thus, incase-1<a <0
we get

WP —4)+2 2

> > 2.
1+a 1+ o

Ay (o) =

Hence, in the following, we may assume: 0.
By Lemma7, 4, > w{"‘—ilok > %(—8) > — ¢. This proves 1.

258 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264
fo<a<l— 3./,

Ay = 2200 e¥2i g 1
- 1+« ~ 14a T 167

which proves).
Finally, 0< e < ; yieldse < */75 Thus,®, <2-2./¢ andoy > — e impliesoyy <1- 3 /6.
O

4. More cows

The basic idea for proving a lower boupd 9 + ¢ for online matching is to run two (or
more) cow sequences. Assume, we have two “cows” with current matchingsM; and
M = M;, directed away from each other, as indicated in BigVe will omit indices if all
parameters in question are indexedkby

Assume that the first cow sequence is continuedri2.M, M + 1, etc. are requested.
Furthermore, assume the online algorithm serves all these requests fromright, thus extending
M to some point “beyond the second cow” (cf. F¢R)) until it switches back tdf’ = M. 1
(cf. Fig. 4(b)).

This results in @ombined cowcf. Fig.4(b)) in the sense that, when the request sequence
is continued withr = —M’, —M’ — 1, .. ., the online algorithm behaves as if the current
matching was\f = M’ + M and can be analyzed like a “simple cow”.

In absence of the second cow, the new potential of the first cow (after switching back
to M’) would bed’, whered' is the same as the potential of the first cow immediately
after switching, disregarding the current matchibgof the second cow. In particular,
Lemmasl1(1l) and7 imply

2

Furthermore, the “combined cow” has scanned the same area as the “first cow”, i.e., we
have thetotal range equality

Q2+)M =2+ a)M. (7)

The effect of “eating up the second cow” is that, under certain circumstances (cf. below),
the potentialfb of the combined cow is smaller thai.

The parameter, ¢, etc. of the combined cow are easily computed from the parameters
a, o, etc. of the second cow and the parametérs’, etc. of the first cow (after the next
switch, disregarding the second cow).

Lemma 12. The new paramete®, L, &, &, & satisfy
(1) 6M = o'M' + M,
(2) 50 = o' M’ — 2M,
b—Mp L M5 _
(3) d=La' 1 UG 2.

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264 259

M M
OO O « o o o « o = 5 00 0O — 00 o0
Fig. 3. Two cows in opposition.
O O O o o o o o o o - - « OO0
@)
M’ M
OO0 e+ e e e e e e e — 0o
(b)
M
[e)Ne} ®e o s s e e e s s s s s s s [olNe)
(©

Fig. 4. Combining two cows.

Proof. Clearly,L = L + L’ and thus
QO—OM=9—d)M +9—5)M

implying the first equation. The second assertion follows directly from the total range

equality (7).
The combined potential is now easily computed

~ M’ M
M M

In particular,® is significantly less thad’, for example, whe@ < 4. In view of 6), we
may even expect thak is significantly smaller thag.

This is the basic idea of our approach: We run a cow sequence as long as the potential
decreases significantly, saly> 1. When this is no longer guaranteed, ile< 1 occurs,
we start a little “second cow” to be eaten up in the next step, so that the potential decreases
nonetheless. The potential will, thus, eventually drop below2,/¢. From this point on,
the potential decreases automatically (cf. Lemiiy i.e., ® would decrease te-co, a
contradiction.

To work this out in detail, consider @ + ¢)-competitive algorithm for matching on a
line with, say,e = 0.001. We start a cow sequencerat 0 and sufficiently large:g. As
long as4 > {5, we continue the sequence. Eventually, sidce- —e — 2, 4 < {5 must

: 16’
occur, implying

3e

<8
o< —<—=
16 °5

3
and a>1—21¢§>1—¢§
by Lemmas9 and11.
Assume w.l.0.g. that the current matchihf = M, points to the left as in Fig3. We
then start a second cow at= [1.1M] with mg = [eM]. The total length credit that

260 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264

we inherit from the first cow isc + ¢) M < geM. We compute
Q-)M+ L < (9+e) M+ M)
. 6 _
=L < §8M+ O+e)M
6 _ - 6 -
< §m0+(9+5)M< 9+§+6‘ M.
So the second cow is certainly bound to be 11-competitive. Assume it produces current
matchingsMy. Then
M1 = [eM] and Mo<5[eM],

sinceL1 = 2M»+ M1 < 11M;. Furthermore, we havé; < 4 for! >3 by (). This together
with 11-competitiveness, i.6; > — 2, yields

oy <3 andM1+1 =1+ &Z)Ml < 4]_41 fori1>3. (8)

Lemma 13. Let M = M;, where L is chosen to be the firsk 3 with ; pointing to the
rightand M; > 3¢M. Then

3eM <M < 100 M. (9)

Thus there still are unused servers in between M aiid

Proof. EitherM = M3z or M = M4 and hence < 10QM, orl > 4 andM;_><3ecM, so
thatM; <3-16eM. [

Sincel > 3, we have
Q<4 %1
(assumingng and hence alsig are large enough). This does not yet imply 4 (which

we would like to have in view of Lemm&2). However, the estimate below will turn out to
be good enough for our purposes.

Lemma 14.

G<5-4. (10)

Proof. First we shows > — 3. Fora < —3, i.e. M;1 < 3M;, would imply

Liy1=2(Mz+ -+ M12) + M1 — (2 + 2)
> 2M; 4+ 3Mj11 + 2Mj42
>A4My 1+ 3Mp1 + 4AM .

So we could force the online algorithm to violate 11-competitiveness in the next step. Thus

G=®0-20<5-24. O

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264 261

M M @A+ M
T — T SNAN AN
...... 5 .-r OO O0OO0OO0O0

Fig.5.M = [LAM] + 1+ a)M — M.

Lemma 15. In order to stay(9 + ¢)-competitivean online algorithm must serve requests
r=M,M+1, ... etc.forthefirstcow fromthe rightthus extending the current matching
M to a point beyond the second coas in Fig.4(a).

Proof. Assume to the contrary that the algorithm servess M, M + 1, ... from the
right and switches back to the left before reaching the “second cow”, i.e. it serves some
r<[11M7 — M from the left. We restrict explicit computations to the case where
[1.1M] — M. (The case < [1.1M] — M is similar but even easier.)

When the algorithm serves = [1.1M7] — M from the left, i.e. from the server at
s = —(1+ «)M, we continue the sequence for the first cow, i.e. we request—(1 +
M, —(1 + a)M — 1, etc. until eventually the algorithm switches back to the current
matchingM (cf. Fig. 5).

Usinga < 3 from 8) andM <0.1M, we find

M <[1.1M7] + aM <1.5M.

On the other hand, the additional (after having reached the situation in L&3)rravel
length is

AL>2((L+)M + M)+ (r — M) =22+)M + 0.1M.
So the total travel length would be
L=L+L+AL
>L+AL>(13+2z— 0+ 0.1)M > 15M.
(Recall thatr > 1 — /¢ ando < ¢/5.) SoL/M > 10, a contradiction. (]

Hence the first cow is forced to eat up the second in the next step, resulting in a “combined
cow” with potential

- M, M _ M’ M 2

D M@D + M(G H< M(@+e)+ v, (1 11).
Now @ > 2 — 2,/¢ by assumption (otherwise we would have htg 1—168, cf. Lemmall).
So the upper bound fab is maximized by takingZ as small as possible. By definition,
however,M > 3¢M. Since (cf. Lemm&®) ¢ < 4 — o < 4- % we certainly have
0= (P —0)2<(P+¢)/2 < 2,50M = (1+a)M<3M,ie.M > sM'. Hence, by
Lemmal2, (6) and Lemmadl4

£ 2
@ £ (1-Z2).
14" +8)+1+e< 11)

o<

262 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264
Now, if still ¢>2 — 2,/ >2 — & we compute
b<dt2e— 2 <o
e — —&—¢ - —¢,
b 11 b 11

proving the desired significant decrease in potential.

Summarizing, we can force a decreasdl of 1—168 ord4> %18 in each step, so that eventu-
ally the potential will drop below 2 2,/¢ and then, by Lemmal, continue to drop further
automatically towards-oo, a contradiction. We have thus proved:

Theorem 16. Any p-competitive algorithm for online matching on a line must have ratio
p>9.001.

More precisely, our analysis reveals thatdrops from®@<4 to ® < —1 in O~ 1)
switches of the “first” (combined) cow. Using the second inequality in Lerfymee easily
derive a finite variant of Theorerh6, where servers are located at integral positions in
[—N, N] for sufficiently largeN and requests, ..., rp (k<2N + 1).

5. Work functions

In this section we investigate a rather straightforward online matching algorithm and
show that it has infinite competitive ratio. The algorithm is based on the conceirkf
functions which have already been shown to be useful in standard online server problems,
cf. [4] or [2] and have been suggested as good candidates for online algorithms for the
matching problem on a lings].

We will merely restrict to an outline of the construction, as it is easy but tedious to figure
out the details. Furthermore, Koutsoupias and Nang8htiave, independently, analyzed
work functions in more detail. Presenting an easier, but (like ours) hierarchically structured
example, they show that the competitive ratio of work function algorithrfiXlisg ») and
O(n).

In our context, a work function algorithm can be defined as follows. Assume the online
algorithm has already served requeBts- {r1,...,r:},t >0, fromS = {s1,...,s:}. The
size of the corresponding current matching (the optimal matching 8amto R) is then
called thework functionof S, denoted byw, (S). When the new request,; arrives, we
determines, ;1 to be the server that minimizes

YAw +d,

whereAw = w;1+1(SU{s;+1}) —w,(S) anddis the distance from} ;1 tor;11. The weighting
factory >0 can be chosen arbitrarily. The choige= 0 corresponds to the simple greedy
strategy serving each new request from the nearest server.

To simplify our analysis, we chosg = 3. This results in an online algorithm that
asymptotically follows the doubling technique when applied to simple cow sequences.
In the situation indicated in Fig5, choosings;+1 to be the left serves_ would give
Aw = 1andd = 1, so Aw + d = 4. For the right server we findAv + d < 4 as soon as

the current matching size is rougl”%yof the distance between and the new request.

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264 263

o
o

Fig. 6. A simple cow.

2M M

ATSATTNNAN
O O O O e ¢« ¢ em— O O o o ew—e O e o e@——e O
S 1 2 S S

Fig. 7.k cows.

-
QO e~ s o o o o —e o e o o em—— o o+ o o e@—s o
Sc-6M S Se1 2 St S

Fig. 8.k concatenated cows.

Though this algorithm performs optimally (with competitive ratio 9) on simple cow
sequences, it has infinite competitive ratio in general. To see this, coksidersequences
next to each other as in Fig.

Assuming that the algorithm has already (approximately) spent factor 9 on each of the
cow sequences and that there is exactly one unused server between each of them at positions
s1, 82, ..., Sk. A new request at positiony will be served froms;. A second request ag
will face work functions of 8 + 1) + 3M + 1 for s, and 33M + 1) + 3M + 1 for sg
and thus will then be served frosa. After that, a request ap will be served fromss, etc.
Finally, a request owy will be served froms; — 1, a request there from — 2, etc., until
finally a request on position (roughly)} — 6M will be served fromsg. At this point in
time, our current matching looks like the one indicated in Bigind the algorithm has spent
(approximately) @M + 3kM + 3kM which is 15 times the current matching on this type
of concatenated cow sequence

Itis now straightforward to iterate this argument, placing a number of such concatenated
cow sequences next to each other and proving a lower bound of 21 for the competitive ratio,
etc. So our algorithm has indeed unbounded competitive ratio.

Other values ofy can be analyzed similarly, so it seems that (standard) work function
algorithms are of no help in online matching. Or, to put it differently: Whether to chose the
left or right server_ resp.s;. for serving a new request should probably be decided by also
taking into account the situation outside the inteffyal, s].

References

[1] R. Baeza-Yates, J. Culberson, G. Rawlins, Searching in the plane, Inform. Comput. 106 (1993) 234-252.

[2] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambride University Press,
Cambridge, 1998.

[3] E. Koutsoupias, A. Nanavati, The online matching problem on a line, in: K. Jansen, R. Solis-Oba, (Eds.),
Approximation and Online Algorithms, First International Workshop, WAOA 2003, Lecture Notes in Computer
Science, Vol. 2909, Springer, Berlin, 2004, pp. 179-191.

[4] E. Koutsoupias, C. Papadimitriou, On theserver conjecture, J. ACM 42 (5) (1995) 971-983.

[5] C. Papadimitriou, M. Yannakakis, Shortest paths without a map, Theoret. Comput. Sci. 84 (1991) 127-150.

264 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251264

[6] K. Pruhs, B. Kalyanasundaram, Online network optimization problems, in: A. Fiat, G. Woeginger (Eds.),
Online Algorithms: The State of the Art, Lecture Notes in Computer science, Vol. 1442, Springer, Berlin,
1998, pp. 268-280.

[7] G. Woeginger, Personal communication.

	Online matching on a line
	Introduction
	The cow path problem
	Cow sequences
	More cows
	Work functions
	References

