
Theoretical Computer Science 332 (2005) 251–264
www.elsevier.com/locate/tcs

Online matching on a line

Bernhard Fuchsa,∗,1, Winfried Hochstättlerb, Walter Kernc
aCenter for Applied Computer Science Cologne, Universität zu Köln, Weyertal 80, D-50931 Köln, Germany

bDepartment of Mathematics, BTU Cottbus, Postfach 10 13 44, D-03013 Cottbus, Germany
cDepartment of Applied Mathematics, University of Twente, P.O. Box 217, NL-7500 AE Enschede, Netherlands

Received 1 January 2003; received in revised form 13 September 2004; accepted 11 October 2004
Communicated by A. Fiat

Abstract

Given a setS ⊆ R of points on the line, we consider the task of matching a sequence(r1, r2, . . .) of
requests inR to points inS. It has been conjectured [OnlineAlgorithms: The State of theArt, Lecture
Notes in Computer Science, Vol. 1442, Springer, Berlin, 1998, pp. 268–280] that there exists a 9-
competitive online algorithm for this problem, similar to the so-called “cow path” problem [Inform.
and Comput. 106 (1993) 234–252]. We disprove this conjecture and show that no online algorithm
can achieve a competitive ratio strictly less than 9.001.
Our argument is based on a new proof for the optimality of the competitive ratio 9 for the “cow

path” problem.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Competitive analysis; Matching; Online algorithms

1. Introduction

We consider a special class of online server problems, where a number of servers (not
necessarily finite), located on the real line, is to serve a sequence of requestsr1, r2, . . . , rk ∈
R. In contrast to classical server problems (cf, e.g.[2,4]), however, each server can serve
at most one request. So the optimal offline solution is the minimum cost matching of the

∗ Corresponding author.
E-mail addresses:bfuchs@zpr.uni-koeln.de(B. Fuchs),hochstaettler@math.tu-cottbus.de(W. Hochstättler),

w.kern@math.utwente.nl(W. Kern).
1 Supported by Deutsche Forschungsgemeinschaft, Graduiertenkolleg Scientific Computing, GRK 192/5-02.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.10.028

http://www.elsevier.com/locate/tcs
mailto:bfuchs@zpr.uni-koeln.de
mailto:hochstaettler@math.tu-cottbus.de
mailto:w.kern@math.utwente.nl

252 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264

requests into the set of server positionssi . The problem is therefore also known as theonline
matching problem on a line[6]. As an application, consider a Bowling Center with bowling
shoes of sizess1, s2, . . . at its disposal to meet requested shoe sizesr1, r2, . . . of entering
players.
An online matching algorithm is�-competitiveif, after servingr1, . . . , rt (t ∈ N), the

current lengthL of the online matching constructed so far is at most� times the current
optimal matching cost. It is a challenging open question to prove or disprove the existence
of �-competitive online algorithms with finite competitive ratio�.
For notational convenience, we consider a “universal” instance with infinitely many

servers, one at each integers ∈ Z. The lower bound on� we shall derive is easily extended
(cf. Section4) to thefinite case, where there is only a finite number of servers given, say,
one at each integrals ∈ [−N, N] for sufficiently largeN, and requestsr1, . . . , rk ∈ R (with
k�2N + 1).
In the next section we will simulate the famous “cow path” problem, which is known

to have an optimal online algorithm with competitive ratio of 9[1], with an instance for
the matching problem on a line. In Section3 we present a new proof for optimality of this
competitive ratio. In Section4we extend this result to a lower bound of 9+ε for the online
matching problem on a line withε=0.001, contradicting a conjecture presented in[6] that
a competitive ratio of 9 can be achieved. Our choice ofε is not optimized but our method
does not seem to yield a significantly larger lower bound.
In [6] it is also suggested that generalized work function algorithms might perform well.

In Section5 we show that these algorithms have infinite competitive ratio.

2. The cow path problem

The authors of[6] call the following problem “hide and seek”, butmore often it is referred
to as the “cow path” problem, interpreted as a cow trying to escape from the meadow and
looking for a hole in the fence[7]. Mathematically, the fence is represented by the real line
and the cow’s initial position is the origin. We are seeking for a path visiting eachx ∈ Z

(each possible location of the hole) after traveling a distance of at most�|x|. Such a path
is called a�-competitive path (solution) to the (discrete) cow path problem. Any such path
will without loss of generality first lead tol1 < 0, then turn to the right until it reaches
l2 > 0, turn again and move tol3 < l1, and so on. Thus, such a cow path is completely
characterized by the sequence of its turning pointsl1, l2, l3, . . . ∈ Z.
The basic difficulty for an online algorithm for the matching problem on the line is to

decide which server to use for matching a new requestr. There are essentially two choices:
Either the servers− that is closest tor from left or the servers+ that is closest tor from right
(among those servers that are currently still unmatched). Indeed, servingr from a server at
s < s− can be interpreted as movings to s− and servingr from s−.
The following request sequence forces any online algorithm for the matching problem

to simulate a “cow path”. The first two requests are atr1 = r2 = 0, and each subsequent
request is exactly at the positionwhere a server has just beenmoved off to serve the previous
request. Assume thatr2 is served froms2 = −1. In order to stay�-competitive, the online
algorithm may first continue to serve a number of requests from left, but must eventually

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264 253

switchto serving some requestr = i� − 1 from right, i.e. froms = 1. (Indeed,|i|��/2).
It may then continue to serve a number of requests from right, but eventually it will have to
switch again, serving some requestr = j �1 from left, etc. Thus the online algorithm for
such an instance is characterized by its turning pointsl1, l2, l3, . . .which can be interpreted
as a cow path.

Proposition 1. Any �-competitive algorithm for online matching on a line yields a�-
competitive algorithm for the discrete cow problem.

Proof. Consider a request sequence as described above that stops whens = x is used
as a server. Assume that our online algorithm produces a sequencel1, l2, l3, . . . , lk with
li < 0 for i odd andi > 0 for i even. The constructed online matching then has a cost
of |x| + 2∑k

i=1 li , whereas the optimum matching costs min{|x|, |lk| + 1}, since serving
r2 = 0 fromx resp.lk ±1, all the other requests can bematched at no cost. To see this, note,
that the request sequence consists of all integers in[x + 1, lk] resp.[lk, x − 1] where 0 is
requested twice. Obviously, the cost of the online matching equals the cost of a cow path
with turning pointsl1, l2, l3, . . . , lk. �

This analogy yields a lower bound of��9 for the competitive ratio of any online algo-
rithm for matching on a line, cf.[1] or Section3.
For future purposeswe, additionally, scale the above sequenceand start with 2m0 requests

at r = 0, ±1, ±2, . . . ,±(m0− 1),0. Now the second request atr = 0 will be served, say,
from s = −m0.We then continue requesting exactly at the positions where a server has just
been moved off.We refer to such a request sequence as acow sequencewith parameterm0,
started atr = 0.

3. Cow sequences

Consider an online algorithm for the matching problem on a line and assume it has
already served requestsr1, . . . , rt ∈ Z. We denote byL the (length of) the matching
constructed so far and refer to it as thecurrent travel length. M∗ denotes the (length of)
the current optimal matching fromR = {r1, . . . , rt } into Z. In addition, we introduce the
current matching M: Assume that the online algorithm has served the currently known set
of requestsR = {r1, . . . , rt } from serversS = {s1, . . . , st }. ThenM is the (length of) the
optimal matching fromS to R. We stress that, in general, this is different from bothL and
M∗.
As an example, consider a cow sequence as in Section2 and assume that the online

algorithm switches atr = −i to serving from right and then continues servingr = m0, r =
m0 + 1, . . . , r = j − 1 from right. The current matchingM is then the assignmentm0
→
0, m0 + 1
→ m0, . . . , j
→ j − 1 (cf. Fig.1).
In the situation indicated in Fig.1 we haveM = j, L = 2i + j and, assuming that

j > i, M∗ = i + 1. In our figures, we indicate unused servers by◦. Note, that always
M1 = m0 and, in terms of turning pointsl1, l2, . . . of a cow path we have|Mi+1| = |li | +1
for i = 1,2,

254 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264

M

-i 0 j

Fig. 1. The current matchingM (m0 = 1).

M1

l3

l1

M

M

2

3

l2

Fig. 2. A cow path and corresponding current matchingsMk .

We use current matchings to analyze the behaviour of a�-competitive algorithm for the
matching problem (and provide a new proof for the lower bound��9 on cow sequences).
When the online algorithm serves a cow sequence, we letMk, k�1, denote the current
matching immediately after thekth switch (cf. Fig.2).

Proposition 2. After the kth switch,when the current matching isMk, the online algorithm
has travelledL1 = 2l1+ m0 = 2M2 + M1− 2 if k = 1 and

Lk = 2
k−1∑
i=2

Mi + 3Mk + 2Mk+1− 2k, for k�2. (1)

Proof. Fork�2,Lk = 2
∑k

i=1 lk + Mk = 2
(∑k+1

i=2 Mi − 1
)

+ Mk and the claim follows.

�

The standard online algorithm for serving cow sequences is based on thedoubling tech-
nique, switching between left and right so thatMk = 2Mk−1 holds for k�2. This in
particular guarantees that, after each switch, the current matchingM = Mk is the current
optimal assignmentM∗ = M∗

k (andM stays optimal until it exceedsMk+1). Furthermore,
by induction we have

Lk = 9Mk − 4M1− 2k (2)

implying

Corollary 3. The doubling technique is 9-competitive for serving cow sequences.

To see that factor 9 is best possible, consider an arbitrary online algorithm for serving
cow sequences, producing current matchingsMk and travel lengthsLk after thekth switch.
Let �k and�k be such that

Lk = (9− �k)Mk and Mk+1 = (1+ �k)Mk. (3)

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264 255

Remark 4. The doubling technique would correspond to�k = 1, k�1. In general only
�k > −1 holds by definition, thus,�k may be negative, andMk is not guaranteed to be the
current optimal assignment for allk�1. For a 9-competitive algorithm,��0 indicates the
current “length credit” (relative to the currentM) and� can be interpreted as the “credit we
have gained by exploring a region of size(1+ �)M on the opposite side”. In this sense the
potential defined below may be interpreted as a kind of “total current credit”.

We introduce thepotential

�k := �k + 2�k, k�1.

In the following we derive a recursion for�k, showing that any(9 − ε)-competitive
algorithm would yield�k → −∞, contradicting��0 and� > −1.
Our recursion starts as follows:

�1 = 9− M1+ 2M2 − 2
M1

+ 2�1 = 6+ 2

M1
= 6+ 2

m0
≈ 6

and

�2 = 9− 3M2 + 2M3− 4
M2

+ 2�2 = 4+ 4

M2
≈ 4,

assumingm0 is chosen sufficiently large.
Furthermore, observe that any�-competitive algorithm must necessarily produce expo-

nentially growingMk ’s in the following sense.

Lemma 5. Any�-competitive algorithm must satisfy
(1) Mk+2��� �2Mk,

(2) Mk � �
2Mk−1.

Proof.AssumeMk+2���<2Mk andconsider thesituation immediatelyafter the(k + 2���)th
switch. Then

Lk+2��� = 2
k+2���−1∑

i=2
Mi + 3Mk+2��� + 2Mk+2���+1− 2k

� 2
���−1∑
i=0

Mk+2i �2
���−1∑
i=0

Mk

> ���Mk+2���,

contradicting�-competitiveness.
By Proposition2 for k�3 we haveLk−1�3Mk−1+2Mk implying the second assertion.

�

The first inequality of the previous lemma implies thatk
Mk

(
and even

∑
k

Mk

)
can be

made arbitrarily small by an appropriately large choice ofm0. The second inequality gives
a rough upper bound on�k as follows.

256 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264

Lemma 6. For k�3

�k < 4− 2

�
, (4)

for m0 sufficiently large.

Proof.

(9− �k)Mk = Lk � 2Mk−1+ 3Mk + 2(1+ �k)Mk − 2k
�

(
4

�
+ 5

)
Mk + 2�kMk − 2k.

Dividing byMk yields

�k �4− 4

�
+ 2k

Mk

< 4− 2

�

for m0 sufficiently large. �

Next we derive the recursion for�k.

Lemma 7.

�k+1 = �k − �k + 2

Mk+1
with �k = �k�k + 2(1− �k)

2

1+ �k

. (5)

Proof.We compute from Proposition2 that

(9− �k+1)Mk+1− (9− �k)Mk = Lk+1− Lk = 2Mk+2 + Mk+1− Mk − 2.
SubstitutingMk+1 = (1+ �k)Mk, Mk+2 = (1+ �k+1)(1+ �k)Mk and dividing byMk

gives

(�k+1+ 2�k+1)(1+ �k) = 6�k + �k − 2+ 2

Mk

= (�k + 2�k)(1+ �k) − (�k�k + 2(1− �k)
2) + 2

Mk

.

Dividing by 1+ �k yields the recursion. �

Remark 8. The exponential growth rate of theMk ’s ensures that
∑ 2

Mk
can be made

arbitrarily small, so that the update�k+1 = �k − �k would give approximately correct�
values.

It is now easy to see that a(9− ε)-competitive algorithm for serving cow sequences (and
hence, a fortiori, for matching on a line) cannot exist. Such an algorithm would maintain
�k �ε > 0. This implies

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264 257

Lemma 9. If �k �0we have�k � 1
3�k. If, furthermore, �k �ε > 0 for all k then

�k � 1
3ε > 0 for all k.

Proof.

�k − 1

3
�k = �k�k + 2(1− �k)

2

1+ �k

− 1

3
�k

=
1
3�k�k + 1

3�k(�k − 1) + 2(1− �k)
2

1+ �k

.

Since the minimum of the denominator of the fraction in the last line, for given�k �0, is
attained at�k = 1− 1

6�k, the claim follows. �

So the update�k+1 = �k − �k, and, according to Remark8, �k+1 = �k − �k +
2

Mk+1, would yield limk→∞ �k → −∞, whereas�k = �k + 2�k �ε + 2(−1) must
hold, a contradiction. Our approach also reveals that any 9-competitive algorithm must
asymptotically follow the doubling technique when serving a cow sequence.

Theorem 10. Any online algorithm for matching on a line that is9-competitive for cow
sequences produces�k, �k with limk→∞ �k = 0 and limk→∞ �k = 1.

Proof. By Lemma9 �k �0 for all k implies that�k �0 in Lemma7 and further,∑j �k �j

must converge to zero ask tends to∞. This can only happen when�k → 1 and�k → 0.
�

Themain difficulty in analyzing(9+ε) competitive algorithms serving a cow sequence is
due to the fact that� < 0 and hence� < 0 may occur, causing anincreaseof the potential.
The following lemma bounds� from below and gives sufficient conditions for� being
significantly positive.

Lemma 11. Fora(9+ε)-competitivealgorithmservingacowsequencewithm0 sufficiently
large and0�ε� 1

4 we have in iterationk�3
(1) �k � − ε,
(2) �k �1− 3

4

√
ε ⇒ �k � 1

16ε ,
(3) �k �2− 2√ε ⇒ �k � 1

16ε.

Proof. By Lemma6we have fork�3 : �k < 4− 2
9+ε

�4− 1
5. Thus, in case−1< � < 0

we get

�k(�) = �(�k − 4) + 2
1+ �

>
2

1+ �
> 2.

Hence, in the following, we may assume��0.
By Lemma7, �k � �k

�k+1�k � �k

�k+1(−ε)� − ε. This proves 1.

258 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264

If 0���1− 3
4

√
ε,

�(�) = ��k + 2(1− �)2

1+ �
�

−ε + 2 · 916ε
1+ �

� 1

16
ε,

which proves (2).

Finally, 0�ε� 1
4 yieldsε�

√
ε

2 . Thus,�k �2−2√ε and�k � −ε implies�k �1− 3
4

√
ε.

�

4. More cows

The basic idea for proving a lower bound��9+ ε for online matching is to run two (or
more) cow sequences. Assume, we have two “cows” with current matchingsM = Mk and
M̄ = M̄l , directed away from each other, as indicated in Fig.3. We will omit indices if all
parameters in question are indexed byk.
Assume that the first cow sequence is continued, i.e.r = M, M + 1, etc. are requested.

Furthermore,assume theonlinealgorithmservesall these requests fromright, thusextending
M to somepoint “beyond the secondcow” (cf. Fig.4(a)) until it switchesback toM ′ = Mk+1
(cf. Fig. 4(b)).
This results in acombined cow(cf. Fig.4(b)) in the sense that, when the request sequence

is continued withr = −M ′, −M ′ − 1, . . ., the online algorithm behaves as if the current
matching wasM̃ = M ′ + M̄ and can be analyzed like a “simple cow”.
In absence of the second cow, the new potential of the first cow (after switching back

to M ′) would be�′, where�′ is the same as the potential of the first cow immediately
after switching, disregarding the current matchingM̄ of the second cow. In particular,
Lemmas11(1) and7 imply

�′ �� + ε + 2

M ′ . (6)

Furthermore, the “combined cow” has scanned the same area as the “first cow”, i.e., we
have thetotal range equality

(2+ �′)M ′ = (2+ �̃)M̃. (7)

The effect of “eating up the second cow” is that, under certain circumstances (cf. below),
the potential�̃ of the combined cow is smaller than�′.
The parameters̃�, �̃, etc. of the combined cow are easily computed from the parameters

�̄, �̄, etc. of the second cow and the parameters�′,�′, etc. of the first cow (after the next
switch, disregarding the second cow).

Lemma 12. The new parameters̃M, L̃, �̃, �̃, �̃ satisfy
(1) �̃M̃ = �′M ′ + �̄M̄,
(2) �̃M̃ = �′M ′ − 2M̄,
(3) �̃ = M ′

M̃
�′ + M̄

M̃
(�̄ − 4).

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264 259

M

0

M

Fig. 3. Two cows in opposition.

M′ M

M
~

(a)

(b)

(c)

Fig. 4. Combining two cows.

Proof. Clearly,L̃ = L̄ + L′ and thus

(9− �̃)M̃ = (9− �′)M ′ + (9− �̄)M̄

implying the first equation. The second assertion follows directly from the total range
equality (7).
The combined potential is now easily computed

�̃ = �̃ + 2�̃ = M ′

M̃
(�′ + 2�′) + M̄

M̃
(�̄ − 4). �

In particular,�̃ is significantly less than�′, for example, when̄� < 4. In view of (6), we
may even expect that̃� is significantly smaller than�.
This is the basic idea of our approach: We run a cow sequence as long as the potential

decreases significantly, say�� ε
16. When this is no longer guaranteed, i.e.� < ε

16 occurs,
we start a little “second cow” to be eaten up in the next step, so that the potential decreases
nonetheless. The potential will, thus, eventually drop below 2− 2√ε. From this point on,
the potential decreases automatically (cf. Lemma11), i.e.,� would decrease to−∞, a
contradiction.
To work this out in detail, consider a(9+ ε)-competitive algorithm for matching on a

line with, say,ε = 0.001. We start a cow sequence atr = 0 and sufficiently largem0. As
long as�� ε

16, we continue the sequence. Eventually, since� > −ε − 2, � < ε
16 must

occur, implying

� <
3ε

16
� ε

5
and � > 1− 3

4

√
ε�1− √

ε

by Lemmas9 and11.
Assume w.l.o.g. that the current matchingM = Mk points to the left as in Fig.3. We

then start a second cow atr̄ = �1.1M� with m̄0 = �εM�. The total length credit that

260 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264

we inherit from the first cow is(� + ε)M � 6
5εM. We compute

(9− �)M + L̄ � (9+ ε)(M + M̄)

⇒ L̄ � 6

5
εM + (9+ ε)M̄

� 6

5
m̄0 + (9+ ε)M̄ �

(
9+ 6

5
+ ε

)
M̄.

So the second cow is certainly bound to be 11-competitive. Assume it produces current
matchingsM̄k. Then

M̄1 = �εM� and M̄2�5�εM�,
sinceL̄1 = 2M̄2+M̄1�11M̄1. Furthermore, we have�l < 4 for l�3 by (4). This together
with 11-competitiveness, i.e.�̄l � − 2, yields

�̄l < 3 andM̄l+1 = (1+ �̄l)M̄l < 4M̄l for l�3. (8)

Lemma 13. Let M̄ = M̄l , where L is chosen to be the firstl�3 with M̄l pointing to the
right andM̄l > 3εM. Then

3εM �M̄ < 100εM. (9)

Thus, there still are unused servers in between M andM̄.

Proof.EitherM̄ = M̄3 or M̄ = M4 and henceM̄ < 100εM, or l > 4 andM̄l−2�3εM, so
thatM̄l �3 · 16εM. �

Sincel�3, we have

�̄ < 4− 2
11

(assumingm0 and hence alsōm0 are large enough). This does not yet imply�̄ < 4 (which
we would like to have in view of Lemma12). However, the estimate below will turn out to
be good enough for our purposes.

Lemma 14.

�̄ < 5− 2
11. (10)

Proof. First we show�̄� − 1
2. For �̄ < −1

2, i.e.M̄l+1 < 1
2M̄l , would imply

L̄l+1= 2(M̄2 + · · · + M̄l+2) + M̄l+1− (2l + 2)
> 2M̄l + 3M̄l+1+ 2M̄l+2
> 4M̄l+1+ 3M̄l+1+ 4M̄l+1.

So we could force the online algorithm to violate 11-competitiveness in the next step. Thus

�̄ = �̄ − 2�̄ < 5− 2
11. �

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264 261

r0

M M (1+α) M

Fig. 5.M̃ = �1.1M� + (1+ �̄)M̄ − M̄.

Lemma 15. In order to stay(9+ ε)-competitive, an online algorithm must serve requests
r = M, M+1, . . .,etc. for the“first cow” from the right, thusextending the currentmatching
M to a point beyond the second cow, as in Fig.4(a).

Proof. Assume to the contrary that the algorithm servesr = M, M + 1, . . . from the
right and switches back to the left before reaching the “second cow”, i.e. it serves some
r ��1.1M� − M̄ from the left. We restrict explicit computations to the case wherer =
�1.1M� − M̄. (The caser < �1.1M� − M̄ is similar but even easier.)
When the algorithm servesr = �1.1M� − M̄ from the left, i.e. from the server at

s = −(1+ �)M, we continue the sequence for the first cow, i.e. we requestr = −(1+
�)M, −(1 + �)M − 1, etc. until eventually the algorithm switches back to the current
matchingM̃ (cf. Fig. 5).
Using �̄�3 from (8) andM̄ �0.1M, we find

M̃ ��1.1M� + �̄M̄ �1.5M.

On the other hand, the additional (after having reached the situation in Lemma13) travel
length is

�L�2((1+ �)M + M) + (r − M)�2(2+ �)M + 0.1M.

So the total travel length would be

L̃ = L̄ + L + �L

� L + �L�(13+ 2� − � + 0.1)M > 15M.

(Recall that� > 1− √
ε and� < ε/5.) SoL̃/M̃ > 10, a contradiction. �

Hence the first cow is forced to eat up the second in the next step, resulting in a “combined
cow” with potential

�̃� M ′

M̃
�′ + M̄

M̃
(�̄ − 4)� M ′

M̃
(� + ε) + M̄

M̃

(
1− 2

11

)
.

Now� > 2− 2√ε by assumption (otherwise we would have had�� 1
16ε, cf. Lemma11).

So the upper bound for̃� is maximized by takingM̄ as small as possible. By definition,
however,M̄ > 3εM. Since (cf. Lemma6) � < 4 − 2

9+ε
< 4 − 1

5, we certainly have

� = (� − �)/2�(� + ε)/2 < 2, soM ′ = (1+ �)M �3M, i.e. M̄ > εM ′. Hence, by
Lemma12, (6) and Lemma14

�̃� 1

1+ ε
(� + ε) + ε

1+ ε

(
1− 2

11

)
.

262 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264

Now, if still �̃�2− 2√ε�2− 1
11 we compute

�̃�� + 2ε − 2

11
ε − ε�̃�� − 1

11
ε,

proving the desired significant decrease in potential.
Summarizing, we can force a decrease of�� 1

16ε or �̃� 1
11ε in each step, so that eventu-

ally the potential will drop below 2−2√ε and then, by Lemma11, continue to drop further
automatically towards−∞, a contradiction. We have thus proved:

Theorem 16. Any�-competitive algorithm for online matching on a line must have ratio
��9.001.

More precisely, our analysis reveals that� drops from��4 to � < −1 in O(ε−1)
switches of the “first” (combined) cow. Using the second inequality in Lemma5, we easily
derive a finite variant of Theorem16, where servers are located at integral positions in
[−N, N] for sufficiently largeN and requestsr1, . . . , rk (k�2N + 1).

5. Work functions

In this section we investigate a rather straightforward online matching algorithm and
show that it has infinite competitive ratio. The algorithm is based on the concept ofwork
functions, which have already been shown to be useful in standard online server problems,
cf. [4] or [2] and have been suggested as good candidates for online algorithms for the
matching problem on a line[6].
We will merely restrict to an outline of the construction, as it is easy but tedious to figure

out the details. Furthermore, Koutsoupias and Nanavati[3] have, independently, analyzed
work functions in more detail. Presenting an easier, but (like ours) hierarchically structured
example, they show that the competitive ratio of work function algorithms is�(log n) and
O(n).
In our context, a work function algorithm can be defined as follows. Assume the online

algorithm has already served requestsR = {r1, . . . , rt }, t �0, fromS = {s1, . . . , st }. The
size of the corresponding current matching (the optimal matching fromS into R) is then
called thework functionof S, denoted bywt(S). When the new requestrt+1 arrives, we
determinest+1 to be the server that minimizes

��w + d,

where�w = wt+1(S∪{st+1})−wt(S)andd is the distance fromst+1 tort+1.Theweighting
factor��0 can be chosen arbitrarily. The choice� = 0 corresponds to the simple greedy
strategy serving each new request from the nearest server.
To simplify our analysis, we chose� = 3. This results in an online algorithm that

asymptotically follows the doubling technique when applied to simple cow sequences.
In the situation indicated in Fig.6, choosingst+1 to be the left servers− would give

�w = 1 andd = 1, so 3�w + d = 4. For the right server we find 3�w + d < 4 as soon as
the current matching size is roughly23 of the distance betweens+ and the new request.

B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264 263

s+s-

Fig. 6. A simple cow.

s0

2M M

s2sk s1sk-1

Fig. 7.k cows.

sk s1s2sk-6M sk-1 s0

Fig. 8.k concatenated cows.

Though this algorithm performs optimally (with competitive ratio 9) on simple cow
sequences, it has infinite competitive ratio in general. To see this, considerk cow sequences
next to each other as in Fig.7.
Assuming that the algorithm has already (approximately) spent factor 9 on each of the

cow sequences and that there is exactly one unused server between each of them at positions
s1, s2, . . . , sk. A new request at positions1 will be served froms1. A second request ats1
will face work functions of 3(M + 1) + 3M + 1 for s2 and 3(3M + 1) + 3M + 1 for s0
and thus will then be served froms2. After that, a request ats2 will be served froms3, etc.
Finally, a request onsk will be served fromsk − 1, a request there fromsk − 2, etc., until
finally a request on position (roughly)sk − 6M will be served froms0. At this point in
time, our current matching looks like the one indicated in Fig.8and the algorithm has spent
(approximately) 9kM + 3kM + 3kM which is 15 times the current matching on this type
of concatenated cow sequence.
It is now straightforward to iterate this argument, placing a number of such concatenated

cow sequences next to each other and proving a lower bound of 21 for the competitive ratio,
etc. So our algorithm has indeed unbounded competitive ratio.
Other values of� can be analyzed similarly, so it seems that (standard) work function

algorithms are of no help in online matching. Or, to put it differently: Whether to chose the
left or right servers− resp.s+ for serving a new request should probably be decided by also
taking into account the situation outside the interval[s−, s+].

References

[1] R. Baeza-Yates, J. Culberson, G. Rawlins, Searching in the plane, Inform. Comput. 106 (1993) 234–252.
[2] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambride University Press,
Cambridge, 1998.

[3] E. Koutsoupias, A. Nanavati, The online matching problem on a line, in: K. Jansen, R. Solis-Oba, (Eds.),
Approximation andOnlineAlgorithms, First InternationalWorkshop,WAOA2003, LectureNotes inComputer
Science, Vol. 2909, Springer, Berlin, 2004, pp. 179–191.

[4] E. Koutsoupias, C. Papadimitriou, On thek-server conjecture, J. ACM 42 (5) (1995) 971–983.
[5] C. Papadimitriou, M.Yannakakis, Shortest paths without a map, Theoret. Comput. Sci. 84 (1991) 127–150.

264 B. Fuchs et al. / Theoretical Computer Science 332 (2005) 251–264

[6] K. Pruhs, B. Kalyanasundaram, Online network optimization problems, in: A. Fiat, G. Woeginger (Eds.),
Online Algorithms: The State of the Art, Lecture Notes in Computer science, Vol. 1442, Springer, Berlin,
1998, pp. 268–280.

[7] G. Woeginger, Personal communication.

	Online matching on a line
	Introduction
	The cow path problem
	Cow sequences
	More cows
	Work functions
	References

