
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

INSTITUT FÜR INFORMATIK I

Elmar Langetepe

Online Motion Planning

MA INF 1314

Summersemester 2016

Manuscript: c©Elmar Langetepe

CONTENTS

Contents

1 Labyrinths, grids and graphs 3

1.1 Shannons Mouse Algorithm . 3

1.2 Intuitive connection of labyrinths, grids and graphs . 4

1.3 A lower bound for online graph exploration . 4

1.4 Exploration of grid environments . 8

1.4.1 Exploration of simple gridpolygons . 9

1.4.2 Competitive ratio of SmartDFS . 20

1.4.3 Exploration of general gridpolygons . 23

1.5 Constrained graph-exploration . 31

1.5.1 Restricted graph-exploration with unknown depth 36

1.5.2 Mapping of an unknown graph . 39

2 Polygonal enviroments 43

2.1 Escape from the labyrinth . 43

2.1.1 Pledge-Algorithm . 43

2.1.2 Pledge-Algorithm with sensor errors . 45

2.1.3 Applications . 49

2.2 Navigation with touching sensor . 52

2.2.1 Strategies of Lumelsky and Stepanov . 52

2.2.2 Strategies from Sankaranarayanan and Vidyasagar 56

2.2.3 Lower Bound . 58

3 Online searching for objects 61

3.1 2-ray search and the Theorem of Gal . 62

3.1.1 Generalization to m-rays . 63

3.1.2 Alternative approach: Equality . 65

3.1.3 2-ray search with bounded distance . 67

3.2 Searching for a ray in the plane . 68

3.2.1 The Window Shopper Problem . 69

3.2.2 General rays in the plane . 74

3.3 Searching in street polygons . 79

3.4 Optimal search paths . 90

4 Exploration in polygons 97

4.1 Simple polygons . 97

4.2 Rectilinear polygons . 99

4.3 General simple polygons . 103

4.4 Polygons with holes . 111

II CONTENTS

LIST OF FIGURES

List of Figures

1.1 Shannons original mouse labyrinth. 4

1.2 An example of the execution of Shannons Algorithm. 4

1.3 Labyrinth, labyrinth-graph and gridgraph. 5

1.4 The agent return to s. 6

1.5 The agent has visited ℓ+1 vertices in corridor 3. 6

1.6 A polygon P and the gridpolygon P2 as a reasonable approximation. 8

1.7 Ist DFS optimal? . 9

1.8 The number of boundary edges E in comparison to the number of cells C is a measure

for the existence of fleshy or skinny parts. 9

1.9 A lower bound construction for the exploration of simple gridpolygons. 10

1.10 First simple improvement of DFS. 11

1.11 Second improvement of DFS. 12

1.12 The ℓ-Offset of gridpolygon P. 14

1.13 Decomposition at a split-cell. 15

1.14 Three types of components. 15

1.15 Special cases: No component of typ (III) exists. 16

1.16 Wave-Propagation. 19

1.17 SmartDFS is optimal in narrow passages. 20

1.18 A simple gridpolygon without narrow passages and no split-cell in the first layer has the

property E(P)≤ 2
3

C(P)+6. After the first coil SmartDFS starts in the 1-Offset P′. The

return path to c′ from an arbitrary point in P′ is shorter than 1
2
E(P)/2−2. 21

1.19 In a corridor of width 3 and with even lenght the bound S(P) = 4
3

SOpt(P)−2 holds. . . . 21

1.20 A gridpolygon Pi that is separated into components of type (I) or (II) at the split-cell. The

rectangle Q is always inside Pi. 23

1.21 2D-cells and D×D sub-cells. 23

1.22 Examples for (i) 2D-Spiral-STC and (ii) Spiral-STC. 25

1.23 (i) Double-sided edge, (ii) one-sided edge, (iii) locally disconnected 2D-cell. 25

1.24 Avoid horizontal edges with the Scan-STC. 26

1.25 Examplle for (i) 2D-Scan-STC, (ii) Scan-STC. 26

1.26 Estimating the double visits of sub-cells by STC locally. 27

1.27 Analysis of STC, all possible cases. 28

1.28 (i) Columns and the change of connectivity, (ii) Columns without changes, (iii) Difficult

online situation. 29

1.29 (i) A Graph with n vertices and with depth r = 1, pure DFS would require a tether of

length n−1. (ii) A graph of depth n, BFS with a tether of length n requires Ω(n2) steps. . 32

1.30 bDFS kann einige Knoten nicht erreichen. 32

IV LIST OF FIGURES

1.31 The algorithm maintains a set of disjoint trees T = {T1,T2,T3} and choose the tree T2

with minimal distance dG∗(s,si). After that the tree is pruned. Subtrees of distance 2

away from s2 with vertices inside that have distance at least 4 from s2 are cut-off. After

that DFS starts on the rest of T2 and starts bDFS on the incomplete vertices. Here some

new graphs G′ will be explored and we build spanning trees T ′ for them. Some trees in

T get fully explored. Tw und T ′ are added to T , the tree T2 is deleted. 33

1.32 A graph of depth r = 6 that cannot be explored by an accumulator of size 2r. 38

1.33 A graph with n+ 1 = 13 vertices. A path of length n
2

visits a clique of size n
2
+ 1. Any

accumulator strategy with accumulator size n+2+d requires Ω(n3) steps. 38

1.34 A graph G = (E,V,S). A local cyclic order need not correspond to the embedding of the

graph. 39

1.35 Two different regular graphs of degree 3, an agent cannot distinguish them without a

marker. 40

2.1 Simple strategies cannot be successful. 44

2.2 (i) Angular counter. (ii) Leave-condition “angular counter mod 2π = 0” is not sufficient.

(iii) The agent cannot escape. 44

2.3 Small deviations sum up to a large deviation. 46

2.4 A local overturn of the angular counter can result in infinite loops. 47

2.5 The difference between (i) crossing and (ii) touching at t2. 48

2.6 Cw loop and two cases. 48

2.7 A curve from K hits any edge once. 49

2.8 (i) Counting the angles in orthogonal polygons, (ii) pseudo-orthogonal polygon with

deviation div. 50

2.9 Maximal deviation from the outer angle (γ) and the assumed (dashed) angle for a convex

or reflex vertices. 51

2.10 Hitting a horizonal edges (i) in the error-free case, (ii) for small absolut γ, (iii) for large

absolut γ. 51

2.11 Example execution of strategy Bug1. 53

2.12 Example of the execution of the strategy Bug2. 54

2.13 The execution of Bug2 can lead to several visits of the same obstacle. 54

2.14 Example of the execution of Change1. 56

2.15 Example execution of strategy Change2. 58

2.16 (i) “virtual” horse-shoe, (ii) “real” obstacles, (iii) shortest possible starting path, (iv)

almost efficient path. 58

3.1 Searching for a door along a line. 61

3.2 In which corridor lies the target point? . 61

3.3 The first steps of a periodic and monotone strategy for m = 4 rays. 64

3.4 A non-periodic and non-monotone strategy. First, we exchange the values f1 and f2 only.

But since J1 = 7 > J2 = 5 holds we fully exchange the role for the corresponding rays K

and L. 65

3.5 Falls wir wissen, dass das Ziel in einer Distanz D liegt, können wir die Strategie optimieren. 67

3.6 Maximal reach depending on the ratio C < 9. 69

3.7 Optimal competitive ratio for given reach. 70

3.8 Die Suche nach dem Ursprung t eines Strahles R. 71

3.9 A strategy for the window shopper! . 71

3.10 An arbitrary search path K is not better than Π. 72

3.11 The inverse situation of the window shopper problem. The curve f−1 should hit the line

X = 1. 74

3.12 A logarithmic spiral is defined by an angle α. A tangent to the spiral will maximize the

ratio. 75

LIST OF FIGURES V

3.13 We would like to optimize the spiral for the closest point, q′, from s on a tangent Tq. . . . 76

3.14 Let q′ be the point on Tq with shortest distance to s. If the angle γ(α) in △qsp is given,

we can determine the ratio for q′. 76

3.15 A ray, R, that emanates from t and is part of a ray that emanates from s. 78

3.16 A bundle of n rays and the representation of a strategy. 78

3.17 A street polygon. 80

3.18 Lower bound for searching the target t. 80

3.19 Typical situations for the task of searching the target in a street polygon. 81

3.20 A funnel polygon. 82

3.21 Generalized lower bound. 83

3.22 A path w from p1 with angle φ1 to p2 with angle φ2. 83

3.23 At p2 a new left reflex vertex is detected. 84

3.24 The left arc of the hyperbola is defined by vl , vr and (l(p)− r(p)) = A
Kφ

and the circle

running through vl and vr is defined by the opening angle φ. 85

3.25 Curves (X(φ),Y (φ)) depending from φ and A. 88

3.26 An example of the application of WCA. 88

3.27 A search path π in a simple polygon. The point p′ on π, is the first point on π such that p

is seen from π. 90

3.28 (i) m ray, (ii) m segments of different length. 91

3.29 The optimal search path for goal set V cannot be approximated by a constant factor for

(i) planar graphs with multiple edges and (ii) general graphs without multiple edges. . . . 94

4.1 (i) X–monotone polygon, (ii) non–monotone polygon, (iii) rectlinear polygon. 97

4.2 A polygon and necessary cuts (dotted), essential cuts (dashed) and the Shortest Watch-

man Route. 98

4.3 (i) A “corner” situation: Several cuts intersect and in a row and a single cut intersects

more than one other cut. (ii) A polygon and its SWR. 98

4.4 In a corner situation the SWR visits the polygons Pci
(here Pi) by the order of the cor-

responding essential cuts along the boundary. In rectilinear polygon essential cuts will

never be passed. 99

4.5 Computing the SWR in a rectinlinear polygon. 101

4.6 Computation of the SWR for all points with distance ≤ d from s in a rectilinear polygon.

It is sufficient to ignore all cuts of distance > d. 101

4.7 Path of the online heuristic and the SWR w.r.t. the L2-metric in a rectilinear polygon. . . 102

4.8 Shifting an L1-optimal path, such that the L2-SWR is inside. The analysis of the detour

for triangles is sufficient. 102

4.9 The worst-case detour in a triangle is
√

2. 103

4.10 An example for the simple version of the Touring Polygon Problem. 103

4.11 An example for the general Touring Polygon Problem. 104

4.12 A greedy-exploration of the reflex vertices is not competitive in a non-rectilinear polygon. 104

4.13 Polygon, Shortest Path Tree and examples for right and left reflex vertices. 105

4.14 Looking around the corner in a competitive fashion. 105

4.15 The optimal path to the unknown cut either is given by the direct path to O of length 1

for ϕ ∈ [π2,π] or is given by an orthogonal path of length sin ϕ for ϕ ∈ [0,π2]. For the

half-circle strategy the worst-case ratio is attained at ϕ = π/2 with a ratio of π/2. 106

4.16 The lower bound construction gives a ratio of 2√
3
. If the strategy visits the π/6-cut to the

right to X , the π/6-cut is the given cut. If the strategy visits the π/6-cut to the left to X ,

the π/2-cut is the given cut. Both cases gives a ratio of 2√
3
. 107

4.17 Exploration of a right vertex. 109

4.18 Exploration of a group of right vertices. 109

4.19 In this case SWR(d) leave the part P(d). PolyExplore keeps inside P(d). 111

VI LIST OF FIGURES

4.20 A polygon with holes. The path detects the full boundary but not all points inside P have

been seen. 111

4.21 The lower bound construction for the exporation of a polygon with holes and a sketch of

the optimal offline path πopt. 112

4.22 Shifting the start point away means that any invisible point has distance Θ(k), this gives

a constant search ratio for the best offline exploration path. 113

LIST OF ALGORITHMS

List of Algorithms

1.1 Shannons Maus . 3

1.2 DFS . 11

1.3 DFS with optimal return trips . 12

1.4 SmartDFS . 13

1.5 Algorithm of Lee . 19

1.6 2D-Spiral-STC . 24

1.7 SpiralSTC . 24

1.8 ScanSTC . 27

1.9 boundedDFS . 32

1.10 CFS . 34

2.1 Pledge-Algorithmu . 43

2.2 Bug1 . 53

2.3 Bug2 . 55

2.4 Change1 . 57

2.5 Change2 . 57

3.1 Searching for the target of a street. 89

3.2 Searchpath by doubling exploration depth . 92

4.1 Shortest Watchman Route for rectilinear polygons . 100

4.2 Online exploration of a rectlilinear polygon . 102

4.3 Exploration of a right vertex. 108

4.4 Exploration of a group of right vertices. 108

4.5 Exploration of simple polygons. 110

VIII LIST OF ALGORITHMS

1

Introduction

This lecture considers tasks for autonomous agents. In general, constructing autonomous machines is

a very complex challenge and has many different engineering and scientific aspects, some of which are

given in the following list.

• Elektronic devices

• Mechanical devices

• Control/Process engineering

• Artificial Intelligence

• Softwareengineering

• ...

• Plans: Algorithmic/Motion planning

• Full information (offline)/ Incomplete information (online)

• Input: Geometry of the Environment

As part of the algorithm track of the master program we will concentrate on the item Algorithms.

That is, we concentrate on the description and analysis of efficient schedules for solving motion planning

tasks for autonomous agents. Besides, we concentrate on problem definitions and models that take the

geometry of the scene into account. In this sense the scientific aspects of this course are part of the

scientific area called Computational Geometry. Furthermore we consider online problems, which means

that the full information of the problem is not given in advance. The agent has to move around and

collects more information.

We will mainly concentrate on the ground tasks of autonomous agents in unknown environments

such as

• Searching for a goal,

• Exploration of an environment,

• Escaping from a labyrinth,

and we consider different abilities of the agents some of which are

• Continuous/discrete vision,

• Touch sensor/compass,

• Building a map/constant memory.

The first concern is that we construct correct algorithms which always fulfil the task. Second we

concentrate on the efficiency of the corresponding strategy. We would like to analyse performance guar-

antees and would like to provide for formal proofs. The course is related to the undergraduate course on

Offline motion planning. In the offline case the information for the task is fully given and we only have

to compute the best path for the agent. The offline solution will be used as a comparison measure for the

online case. This is a well known concept for online problems in general.

2

Chapter 1

Labyrinths, grids and graphs

In this section we first concentrate on discrete environments based on grid structures. For the grid struc-

ture we consider an agent that can move from one cell to a neighbouring cell with unit cost. We start

with the task of searching for a goal in a very special grid environment. After that we ask for visiting all

cells, which means that we would like to explore the environment. For this task the grid environment is

only partially known, by a touch sensor the agent can only detect the neighbouring cells. The agent can

build a map. Exploration and Searching are closely related. If we are searching for an unknown goal,

it is clear that in the worst-case the whole environment has to be explored. The main difference is the

performance of these online tasks. As a comparison measure we compare the length of the agent’s path

to the length of the optimal path under full information. Thus, in the case of searching for a goal, the

comparison measure is the shortest path to the goal.

At the end of the section we turn over to the exploration task in general graphs under different

additional conditions.

1.1 Shannons Mouse Algorithm

Historically the first online motion planning algorithm for an autonomous agent was designed by Claude

Shannon [Sha52, Sha93] in 1950. He considered a 5×5 cellular labyrinth, the inner walls of the labyrinth

could be placed around arbitrary cells. In principle, he constructed a labyrinth based on a grid environ-

ment; see Figure 1.1.

The task of his electronical mouse was to find a target, i.e. the cheese, located on one of the fields of

the grid. The target and the start of the mouse were located in the same connected component of the grid

labyrinth. The electronical mouse was able to move from one cell to a neighbouring cell. Additionally, it

could (electronically) mark any cell by a label N, E , S, W which indicates in which direction the mouse

left the cell at the last visit. This label is updated after leaving the cell. With theses abilities the following

algorithm was designed.

Algorithm 1.1 Shannons Maus

• Initialize any cell by the label N for ’North’.

• While the goal has not been found:

starting from the label direction, search for the first cell in clockwise order that can be visited.

Change the label to the corresponding direction and move to this neighbouring cell.

Sutherland [Sut69] has shown that:

Theorem 1.1 Shannon’s Algorithms (Algorithm 1.1) is correct. For any labyrinth, any starting and any

goal the agent will find the goal, if a path from the start to the goal exists.

4 Chapter 1 Labyrinths, grids and graphs

Figure 1.1: Shannons original mouse labyrinth.

S

T

Figure 1.2: An example of the execution of Shannons Algorithm.

Proof. We omit the goal and show that any cell in the connected component of the start will be visited

infinitely often. 2

Exercise 1 Formalize the above proof sketch!

As shown in Figure 1.2 the path of Shannons Mouse is not very efficient.

1.2 Intuitive connection of labyrinths, grids and graphs

For a human a labyrinth consists of corridors and connection points. In this sense the environment for

Shannons task can be considered to be a labyrinth. Obviously any such labyrinth can be modeled by a

planar graph.1 More precisely the environment for Shannons task is a grid graph. Figure 1.3 shows the

corresponding intuitive interpretations.

For any intuitive labyrinth there is a labyrinth-graph. On the other hand for any planar graph we can

build some sort of labyrinth. This is not true for general graphs. For example the complete graph K5 has

no planar representation and therefore a correspondance to a labyrinth does not exist.

1.3 A lower bound for online graph exploration

We consider the following model. Assume that a graph G = (V,E) is given. If the agent is located on a

vertex it detects all neighbouring vertices. Let us assume that moving along an edge can be done with

1A graph, that has an intersection free representation in the plane.

1.3 A lower bound for online graph exploration 5

O

B

N

L

M

G HC

D

J

I

F

E

(ii) Labyrinthgraph (iii) Gittergraph(i) Labyrinth

AB C F I

H

G

N

L

MD

A E J

K

O

K

Figure 1.3: Labyrinth, labyrinth-graph and gridgraph.

unit cost. The task is to visit all edges and vertices and return to the start. The agent has the ability of

building a map. If we apply a DFS (depth first search) for the edges we will move along any edges twice.

DFS can run online. The best offline strategy has to visit any edge at least once. In this sense DFS is a

2-approximation.

The comparison and approximation between online and offline is represented by the following con-

cept. A strategy that runs under incomplete information is denoted as an Online–Strategy. On the other

hand an Offline–Strategy solves the same task with full information. In the above example the offline

strategy is the shortest round trip that visits all edges of the graph.

The performance measure for Online-Algorithms is the so-called competitive ratio.

Definition 1.2 (Sleator, Tarjan, 1995)

Let Π be a problem class and S be a strategy, that solves any instance P ∈Π.

Let KS(P) be the cost of S for solving P.

Let Kopt(P) be the cost of the optimal solution for P.

The strategy S is denoted to be c–competitive, if there are fixed constants c,α > 0, so that for all

P ∈Π

KS(P)≤ c ·Kopt(P)+α

holds.

The additive constant α is often used for starting situations. For example if we are searching for

a goal and have only two unknown options, the goal might be very close to the start, the unsuccessful

step will lead to an arbitrarily large competitive ratio. This is not intended. Sometimes we can omit the

additive constant, if we have additional assumptions. For example we can assume that the goal is at least

distance 1 away from the start.

As already mentioned DFS on the edges visits any edge at most twice. There are graphs where the

optimal offline solution also has to visit any edge twice. For such examples DFS is optimal with ratio 1.

Now we are searching for a lower bound for the competitive ratio. That is, we would like to construct

example such that any possible online strategy fails within a ratio of 2.

Theorem 1.3 (Icking, Kamphans, Klein, Langetepe, 2000)

For the online-exploration of a graph G=(V,E) for visiting all edges and vertices of G there is always an

arbitrarily large example such that any online strategy visits roughly twice as much edges in comparison

to the optimal offline strategy. DFS always visit no more than twice as much edges against the optimum.

[IKKL00a]

Proof. The second part is clear because DFS visits exactly any edge twice. Any optimal strategy has to

visit at least the edges.

6 Chapter 1 Labyrinths, grids and graphs

The robot should explore a gridgraph and starts in a vertex s. Finally, the agent has to return to s. We

construct an open corridor and offer two directions for the agent. At some moment in time the agent has

explored ℓ new vertices in the corridor. If this happens we let construct a conjunction at one end s′ of the

corridor. At this bifurcation two open corridors are build up which run back into the direction of s. If the

agent proceeds one of the following events will happen.

1. The agent goes back to s.

2. The agent has visited more than ℓ+1 edges in one of the new corridors.

Let ℓ1 denote the length of the part of the starting open corridor into the opposite direction of s′. Let

ℓ2 and ℓ3 denote the length of the second and third open corridor.

We analyse the edge visits |SROB| that an arbitrary strategy SROB has done so far.

1. |SROB| ≥ 2ℓ1 +(ℓ− ℓ1)+ 2ℓ2 + 2ℓ3 +(ℓ− ℓ1) = 2(ℓ+ ℓ2 + ℓ3), see Figure 1.4. Now we close the

corridors at the open ends. From now on the agent still requires |SOPT | = 2(ℓ+ ℓ2 + ℓ3)+ 6 edge

visits, where SOPT is the optimal strategy if the situation was known from the beginning. Thus we

have: |SROB| ≥ 2|SOPT |−6.

l3

l1 l2

s
s′

Figure 1.4: The agent return to s.

2. W.l.o.g. the agent has explored ℓ+1-ten vertices in corridor 3. We have |SROB| ≥ 2ℓ1 +(ℓ− ℓ1)+
2ℓ2+(ℓ+1). We connect corridor 3 with corridor 1(see Figure 1.5) and close corridor 2. The agent

still requires ℓ+ 1+ 2(ℓ2 + 1)+ (ℓ− ℓ1) edge visits; in total at least 4ℓ+ 4ℓ2 + 4 = 4(ℓ+ ℓ2)+ 4

edge visits. From |SOPT |= 2(ℓ+1)+2(ℓ2+1)= 2(ℓ+ℓ2)+4 we conclude |SROB| ≥ 2|SOPT |−4>
2|SOPT |−6.

l

l1 l2

s′
s

Figure 1.5: The agent has visited ℓ+ 1 vertices in corridor 3.

We have |SROB|/|SOPT | ≥ 2− 6/|SOPT |. We also have |SOPT | ≥ 2(ℓ+ 1) and conclude 2− 6/|SOPT | >
2−6/2ℓ= 2−3/ℓ. For arbitrary δ > 0 we choose ℓ= ⌈3/δ⌉ and conclude |SROB|/|SOPT |> 2−δ. 2

1.3 A lower bound for online graph exploration 7

Remark 1.4 There are always examples so that the optimal exploration tour visits any edge twice.

Corollary 1.5 DFS for the Online-Edge-Exploration of general graphs is 2–competitive and optimal.

Exercise 2 Show that the same competitive ratio holds, if the return to the starting point is not required.

Exercise 3 Consider the problem of exploring the vertices (not the edges) of a graph. If the agent is

located at a vertex it detects the outgoing edges but along non-visited edges it is not clear which vertex

lies on the opposite side. Does DFS applied on the vertices result in a 2-approximation?

8 Chapter 1 Labyrinths, grids and graphs

1.4 Exploration of grid environments

Next we consider a simple discrete grid model. The agent runs inside a grid-environment. In contrast to

Shannons the inner obstacles consist of full cells instead of single blocked edges.

We would like to design efficient strategies for such grid environments. First, we give a formal

definition.

Definition 1.6

• A cell c is a tupel (x,y) ∈ IIN2.

• Two cells c1 = (x1,y1),c2 = (x2,y2) are adjacent, if :⇔ |x1− x2|+ |y1− y2|= 1. For a single cell

c, exact 4 cells are adjacent.

• Two cells c1 = (x1,y1),c2 = (x2,y2), c1 6= c2 are diagonally adjacent, if :⇔ |x1− x2| ≤ 1∧ |y1−
y2| ≤ 1. For a single cell c, exact 8 cells are diagonally adjacent.

• A path π(s, t) from cell s to cell t is a sequence of cells s = c1, . . . ,cn = t such that ci and ci+1 are

adjacent for i = 1, . . . ,n−1.

• A gridpolygon P is a set of path-connected cells, i.e., ∀ci,c j ∈ P : ∃ path π(ci,c j), such that

π(ci,c j) ∈ P verl”auft.

The agent is equipped with a touch sensor so that the agent scans the adjacent cells and their nature

(free cell or boundary cell) from its current position. Additionally, the agent has the capability of building

a map. The task is to visit all cells of the gridpolygon and return to the start. This problem is NP-hart for

known environments; see [IPS82]. We are looking for an efficient Online-Strategy. The agent can move

within one step to an adjacent cell. For simplicity we count the number of movements.

The task is related to vacuum-cleaning or lawn-mowing. A cell represents the size of the tool, the

tool should visit all cells of the environment. A general polygonal environment P can be approximated

by a grid-polygon.

ss

Figure 1.6: A polygon P and the gridpolygon P2 as a reasonable approximation.

The starting position and orientation of the tool fixes the grid and all connected cells which are

entirely inside P belong to the approximation P2; see Figure 1.6. For any gridpolygon P′ we use the

following notation. Cells that do not belong to P′ but are diagonally adjacent to a cell in P′ are called

boundary cells. The common edges of the boundary cells and cells of P′ are the boundary edges. Let

E(P′) denote the number of boundary cells or E for short, if the context is clear. The number of cells is

denoted by C(P′) or C respectively.

From Theorem 1.3 we can already conlcude a lower bound of 2 for the competitive ratio of this

problem. On the other hand DFS on the cells finishes the task in 2C−2 steps

1.4 Exploration of grid environments 9

DFS

s s s

Verbesserung Optimal

Figure 1.7: Ist DFS optimal?

Exercise 4 Give a formal proof that for a gridpolygon P the DFS strategy on the cells requires exactly

2C−2 steps for the exploration (with return to the start) of P.

But is DFS really the best strategy in general? For fleshy environments DFS obviously is not very

efficient. Besides the lower bound construction makes use of corridors only. Compare Figure 1.7: After

DFS has visited the right neighbour of s the environment is fully known and we can improve the strategy.

It seems that even the optimal solution could be found in an online fashion in this example. On the

other hand there are always skinny corridor-like environments where DFS is the best online strategy.

Altogether, we require a case sensitive measure for the performance of an online strategy that relies on

the existence of large areas. The existence of large fleshy areas depends on the relationship between the

number of cells C and the number of (boundary) edges E . In Figure 1.7 the environment has 18 edges

and 18 cells. In corridor-like environments we have 1
2
E ≈C in fleshy environments we have 1

2
E <<C;

see also Figure 1.8.

C = 43

E = 86 = 2C E = 34 << 2C

Figure 1.8: The number of boundary edges E in comparison to the number of cells C is a measure for the existence

of fleshy or skinny parts.

1.4.1 Exploration of simple gridpolygons

We first consider simple gridpolygons P which do not have any inner boundary cell, i.e., also the set of

all cells that do not belong to P are path connected.

Note that the lower bound of 2 is not given, because the lower bound construction in the previous

section requires the existence of inner obstacles. We make use of a different construction.

Theorem 1.7 Any online strategy for the exploration (with return to the start) of a simple gridpolygon

P of C cells, requires at least 7
6

C steps for fulfilling the task.

Proof. We let the agent start in a corner as depicted in Figure 1.9(i) and successively extend the walls.

Assume that the agent decides to move to the east first. By symmetry we apply the same arguments, if

the agent moves to the south. For the second step the agent has two possibilities (moving backwards can

be ignored). Either the strategy leaves the wall by a step to the south (seeFigure 1.9(ii)) or the strategy

follows the wall to the east (see Figure 1.9(iii)).

In the first case we close the polygon as shown in Figure 1.9(iv). For this small example the agent

requires 8 steps whereas the optimal solution requires only 6 steps which gives a ratio of 8
6
≈ 1.3.

10 Chapter 1 Labyrinths, grids and graphs

s

ssss

(ii) (iii)

(vii)(vi)(v)(iv)

(i)

s

s

Figure 1.9: A lower bound construction for the exploration of simple gridpolygons.

In the second case we proceed as follows: If the robot leaves the wall (the wall runs upwards), we

close the polygon as depicted in Figure 1.9(v) or (vi), respectively. In this small example the agent

requires 12, respectively, whereas 10 steps are sufficient.

In the last and most interesting case the agent follows the wall upwards and we present the sophisti-

cated polygon of Figure 1.9(vii). In the offline case an agent requires 24 steps. The online agent already

made a mistake and can only finish the task within 24 steps. This can be shown by a tedious case dis-

tinction of all further movements. We made use of an implementation that simply checks all possibilities

for the next 24 steps. There was no such path that finishes the task. For all cases we guarantee have a

worst-case ratio of 28
24

= 7
6
≈ 1.16.

We use this scheme in order to present a lower bound construction of arbitrary size. Any block has

an entrance and exit cell which are marked by corresponding arrows; see Figure 1.9(iv)–(vii). If an agent

moves inside the next block, the game starts again. Since the arrows only point in east or west direction

we take care that the concatenated construction results in a simple gridpolygon of arbitrary size. as

required. 2

Note that the arbitrary-size condition in the above proof is necessary. Assume that we can only

construct such examples of fixed size D. This will not result in a lower bound on the competitive ratio.

Any reasonable algorithm will explore the fixed envirnment with komeptitive ratio 1 since α≫D exists,

with |SALG| ≤ |SOPT|+α.

We consider the exploration of a simple gridpolygon by DFS and formalize the strategy; see Algo-

rithm 1.2. The agent explores the polygon by the “Left-Hand-Rule”, i.e. the DFS preference is Left

before Straight-On before Right. The current direction (North, West, East or South) is stored in the

variable dir. The functions cw(dir), ccw(dir) und reverse(dir) result in the corresponding directions of

a rotation by 90◦ in clockwise or counter-clockwise order or by a rotation of 180◦, respectively. The

predicate unexplored(dir) is true, if the adjacent cell in direction dir is a cell of the environment, which

was not visited yet.

1.4 Exploration of grid environments 11

Algorithm 1.2 DFS

DFS:

Choose dir, such that reverse(dir) is a boundary cell;

ExploreCell(dir);

ExploreCell(dir):

// Left-Hand-Rule:

ExploreStep(ccw(dir));

ExploreStep(dir);

ExploreStep(cw(dir));

ExploreStep(dir):

if unexplored(dir) then

move(dir);

ExploreCell(dir);

move(reverse(dir));

end if

verbesserter DFS

s
c2

c1

DFS

Figure 1.10: First simple improvement of DFS.

A first simple improvement for DFS is as follows:

If there are no unexplored adjacent cells around the current cell, move back along the shortest

path (use all already explored cells) to the last cell, that still has an unexplored neighbouring

cell.

Figure 1.10 sketches this idea: After visiting c1 the pure DFS will backtrack along the full corridor

of width 2 and reach cell c2 where still something has to be explored. With our improvement we move

directly from c1 to c2. Note that for the shortest path we can only make use of the already visited cells.

We have no further information about the environment.

By this argument we no longer use the step “move(reverse(dir))” in the procedure ExploreStep. After

the execution of ExploreCell we can no longer conclude that the agent is on the same cell as before.

Therefore we store the current position of the agent and use it as a parameter for any call of ExploreStep.

The function unexplored(base, dir) gives “True”, if w.r.t. cell base there is an unexplored adjacent cell

in direction dir. We re-formalize the behaviour as follows:

12 Chapter 1 Labyrinths, grids and graphs

Algorithm 1.3 DFS with optimal return trips

DFS:

Choose dir, such that reverse(dir) is a boundary cell;

ExploreCell(dir);

Move along the shortest path to the start;

ExploreCell(dir):

base := current position;

// Left-Hand-Rule:

ExploreStep(base, ccw(dir));

ExploreStep(base, dir);

ExploreStep(base, cw(dir));

ExploreStep(base, dir):

if unexplored(base, dir) then

Move along the shortest path

among all visited cells to base;

move(dir);

ExploreCell(dir);

end if

c1

c2 s

Figure 1.11: Second improvement of DFS.

1.4 Exploration of grid environments 13

Algorithm 1.4 SmartDFS

SmartDFS:

Choose direction dir, such that reverse(dir) is a boundary cell;

ExploreCell(dir);

Move along the shortest path to the start;

ExploreCell(dir):

Mark the cell with its layernumber;

base := current Position;

if not SplitCell(base) then

// Left-Hand-Rule:

ExploreStep(base, ccw(dir));

ExploreStep(base, dir);

ExploreStep(base, cw(dir));

else

// Choose different order:

Calculate the type of the components by the layernumbers

of the surrounding cells;

if No component of typ (III) exists then

Move one step by the Right-Hand-Rule;

else

Visit the component of type (III) last.

end if

end if

ExploreStep(base, dir):

if unexplored(base, dir) then

Move along the shortest path along

the visited cells to base;

move(dir);

ExploreCell(dir);

end if

14 Chapter 1 Labyrinths, grids and graphs

For a second kind of improvement we consider the gridpolygon Figure 1.11. In this example the

current DFS variant fully surrounds the polygon. Finally the agent has to move back from c2 to c1 so

that the corridor of width 2 is visited almost 4 times. Obviously it would be better to first fully explore

the component at c1 move to the other component at c2 and finally move back to the start. In this case

the critical corridor will be visited only once. So, if the exploration splits the polygon into components

that have to be considered, we have to take care which component should be visited first.

A cell (like the cell c1) where the remaining polygon definitely splits into different parts is called a

split-cell. At the first visit of split-cell c1 in Figure 1.11 it seems to be better to not apply the Left-Hand

preference. This depends on the location of the starting point, because we have to move back at the end.

The idea can be formulated as follows.

If the unexplored part of the polygon definitely is splitted into different components (i.e., the

graph of unexplored cells is splitted into different components), try to visit the unexplored

part that does not contain the starting point.

This idea leads to the Algorithm 1.4 (SmartDFS). It remains to decide, which component actually

contains the starting point. For this we introduce some notions. Until the first split happens we apply

the Left-Hand-Rule and successively explore the polygon layer by layer from the outer boundary to the

inner parts. We require a formal definition of the layers.

2l Kanten weniger

l

l

π

2l Kanten dazu

Figure 1.12: The ℓ-Offset of gridpolygon P.

Definition 1.8 Let P be a (simple) gridpolygon. The cells of P that share a boundary edge belong to

the first layer, the 1-Layer of P. The gridpolygon that stems from P without the 1-Layer is called the

1-Offset of P. Recursively, the 2-Layer of P, is the 1-Layer of the 1-Offset of P and the 2-Offset of P

is the 1-Offset of the 1-Offset of P and so on.

Note that the ℓ-Offset of a gridpolygon need not be connected and finally the Offsets will decrease

to an empty polygon. The definition is totally independent from any strategy. Fortunately, during the

execution of SmartDFS on a simple gridpolygon, we can successively mark and store the layers for any

visited cell. The ℓ-Offset has an interesting property.

Lemma 1.9 The non-empty ℓ-Offset of a simple gridpolygon P has at least 8ℓ edges less than P.

1.4 Exploration of grid environments 15

Proof. We surround the boundary of the gridpolygon in clockwise order and visit all boundary edges

along this path. Let us assume that the offset remains a single component. For a left turn the ℓ-Offset 2ℓ
looses 2ℓ edges for a right turn the ℓ-Offset 2ℓ wins 2ℓ edges We can show that there are 4 more right

turns than left turns. So the ℓ-Offset has at least 8ℓ edges less than P. Even more edges will be cancelled,

if the polygon fell into pieces. 2

Exercise 5 Show that for any surrounding of the boundary of a simple gridpolygon in clockwise order

there are 4 more rigth turns than left turns. Make use of induction.

Exercise 6 Show that in the above proof the non-empty ℓ-Offset will loose even more edges, if it consists

of more than one connected component. Show the statement for the 1-Offset.

(i) (ii)

c

P2Q

s

K1

c

P

Q

K2 K2

s

K1

P1 Q

c

s′

Figure 1.13: Decomposition at a split-cell.

Layer 2

Layer 1

(ii)(i)

c

(II)

(III) (III)

(I)

c

Figure 1.14: Three types of components.

We consider Figure 1.13(i): In the 4. Layer for the first time a split-cell c occurs. Now we decompose

the polygon into different components2:

2Let A
•∪B denote the disjoint union A

•∪B = A∪B mit A∩B = /0.

16 Chapter 1 Labyrinths, grids and graphs

P = K1

•∪K2

•∪ {visisted cells of P},

where K1 denotes the component that was visited last. SmartDFS recursively works on K2, returns to c

and proceeds with K1.

By the layernumbers we would like to avoid the situation of Figure 1.11. We will find the split-cell in

layer ℓ, which gives three types of components; see Figure 1.14:

(I) Component Ki is fully surrounded by layer ℓ.
(II) Component Ki is not surrounded by layer ℓ (may be touched by the split-cell only).

(III) Component Ki is partly surrounded by layer ℓ (not only touched by the split cell).

Obviously, if a split-cell occurs, we should visit the component of type (III) last because the starting

point lies in the outer layers of this component.

(i) (ii)

2

2

2

2

2

1

2 2

2

s

c

1

c

1

11 11

111 1

1 1

1

1

1

2

2

2

2

1

121 1 2

2

1

s

1

1

1 2

2

Figure 1.15: Special cases: No component of typ (III) exists.

There are some situations where the a component of type (III) does not exist. For example if the split-

cell is the first cell on the next layer, or the component of the starting point was just explored (efficiently).

More precisely:

(a) The component with the starting point on its layer was just fully explored in the current layer; see

Figure 1.15(i). In this case the order of visiting the remaining components is not critical, we can

choose an arbitrary order. This example also shows that at a split-cell more than two components

has to be visited. We simply apply one the next step by changing to the Right-Hand-Rule.

(b) Two components have been fully surrounded, because at the split-cell we change from layer ℓ to

ℓ+ 1; see Figure 1.15(ii). In all other cases at least one additional visited cell is marked with

layer number of the split-cell. We can conclude that layer ℓ was closed with the split-cell. This

means that the starting point is not part of the layer of the component where the agent currently

comes from. Because the agent normally moves by the Left-Hand-Rule, it suffices to apply the

Right-Hand-Rule in this case also.

Altogether in both cases we simply apply the Right-Hand-Rule for a single step.

For the overall analysis at a split-cell we consider two polygons P1 und P2 as depicted in Fig-

ure 1.13(i). Here we detect the component of type (III). K2 is a component of type (II). Let Q be a

1.4 Exploration of grid environments 17

rectangle of edge length (width or height) 2q+1 around the split cell c so that

q :=

{
ℓ, if K2 has type (I)

ℓ−1, if K2 has type (II)
.

Now choose P2 so that K2 ∪{c} is the q-Offset of K2 ∪{c}. The idea is that the rectangle Q will

be added so that P2 has the desired form. Now let P1 := ((P\P2)∪Q)∩P, comp. Figure 1.13. The

intersection with P is necessary, since there are cases where Q does not totally fit into P. We would like

to apply arguments recursively for P2 and P1. Let us consider them separately as shown in Figure 1.13(ii).

We have choosen P1,P2 und Q in a way so that the paths in P1\Q und P2\Q did not change w.r.t. the

paths already performed for P3. The already performed paths that lead in P from P1 to P2 and from P2 to

P1 will be used and adapted so that the paths outside Q will not change; see Figure 1.13. We can consider

P1 and P2 separately.

We know that any cell has to be visited at least once. Therefore we count the number of steps S(P) for

polygons P as follows. It is the sum of the cells, C(P), of P plus the extra cost excess(P) for the overall

path length.

S(P) :=C(P)+ excess(P).

The following Lemma gives an estimate for the extra cost w.r.t. the above decomposition around a

split-cell.

Lemma 1.10 Let P be a gridpolygon, c a split-cell, so that two remaining components K1 und K2 has

to be considered. Assume that K2 is visited first. We conclude:

excess(P)≤ excess(P1)+ excess(K2∪{c})+1.

Proof. The agent is located at cell c and decides to explore K2 ∪{c} starting from c and return to c.

This gives additional cost at most excess(K2∪{c}), note that the part P2\(K2∪{c}) can only help for the

return path. Because c was already visited, we count one additional item for the excess of visited cells.

After that we proceed with the exploration of P1 and require excess(P1) for this part. 2

For the full analysis of SmartDFS we have to prove some structural properties:

Lemma 1.11 The shortest path between to cells s and t in a simple gridpolygon P with E(P) boundary

edges consists of at most 1
2
E(P)−2 cells.

Proof. W.l.o.g. we assume that s and t are in the first layer, otherwise we can choose different s or t

whose shortest path is even a bit longer. Consider the path, πL, in clockwise order in the first layer from

s to t and the path, πR, in counter-clockwise order in the first layer from s to t. Connecting πL and πR

gives a full roundtrip. As in the proof of Lemma 1.9 counting the edges gives 4 more edges than cells

which gives

|πR|+ |πL| ≤ E(P)−4

visited cells.

In the worst case both path have the same length, which gives |π(s, t)| = |πR| = |πL|, and 2|π(s, t)| ≤
E(P)−4⇒ |π(s, t)| ≤ 1

2
E(P)−2. 2

Lemma 1.12 Let P be a gridpolygon and let c be a split-cell. Define P1,P2 und Q as above. For the

number of edges we have:

E(P1)+E(P2) = E(P)+E(Q).

3For the uniqueness of this decomposition into P1 and P2 we remark that P1 and P2 are connected, respectively and P∪Q =
P1∪P2 and P1∩P2 ⊆ Q holds.

18 Chapter 1 Labyrinths, grids and graphs

Proof. For arbitrary gridpolygons P1 and P2 we conclude

E(P1)+E(P2) = E(P1∪P2)+E(P1∩P2).

Let Q′ := P1∩P2, we have:

E(P1)+E(P2) = E(P1∩P2)+E(P1∪P2)

= E(Q′)+E(P∪Q)

= E(Q′)+E(P)+E(Q)−E(P∩Q)

= E(P)+E(Q), since Q′ = P∩Q

2

Exercise 7 Show that for arbitrary two gridpolygons P1 and P2 we have E(P1)+E(P2) = E(P1∪P2)+
E(P1∩P2).

Using all these arguments we can show:

Theorem 1.13 (Icking, Kamphans, Klein, Langetepe, 2000)

For a simple gridpolygon P with C cells and E boundary edges the strategy SmartDFS required no more

than

C+
1

2
E−3

for the exploration of P (with return to the start). This bound will be attained exactly in some environments.

[IKKL00b]

Proof. By the above arguments it suffices to show excess(P)≤ 1
2
E−3. We give a proof by induction on

the number of components.

Induction base:

Assume that there is no split-cell. For the exploration of a single component, SmartDFS visits all

cells exactly once and return to the start. For visiting all cells we require C− 1 steps. Now the

excess is the shortest path back. By Lemma 1.11 1
2
E−2 steps suffices which gives the conclusion

Induction step:

Consider the (first) decomposition at a split-cell c. Let K1,K2,P1,P2,Q be defined as above, assume

that K2 is visited last. We have:

excess(P) ≤ excess(P1)+ excess(K2∪{c})+1 (Lemma 1.10)

≤(I.A.)

1

2
E(P1)−3+

1

2
E(K2∪{c})
︸ ︷︷ ︸

≤E(P2)−8q (Lemma 1.9)

−3+1

≤ 1

2

[

E(P1)+E(P2)
︸ ︷︷ ︸

≤ E(P)+4(2q+1) (1.12, Def. of Q)

]

−4q−5

≤ 1

2
E(P)−3

2

A Java-Applet for the Simulation of SmartDFS and different strategies can be found at:

http://www.geometrylab.de/

1.4 Exploration of grid environments 19

Finally, we would like to show, how to compute the offline shortest paths in gridpolygons Of course

the Dijkstra algorithm can also be applied on the gridgraph, but this algorithm does not use the grid

structure directly. As an alternative we apply Algorithm 1.5 (C. Y. Lee, 1961, [Lee61]), the running time

is only linear in the number of overall cells. The algorithm simulates a wave propagation starting from

the goal. Any cell will be marked with a label indicating the distance to the goal. Obstacles slow down

the propagation a bit; see Figure 1.16. When the wave reaches the starting point s, we are done with the

first phase. For computing the path we start at s and move along cells with strictly decreasing labels.

Obviously, the shortest path need not be unique.

Algorithm 1.5 Algorithm of Lee

Shortest path from s to t in a gridpolygon

Datastructur: Queue Q

// Initialise

Q.InsertItem(t);
Mark t with label 0;

// Wave propagation:

loop

c := Q.RemoveItem();
for all Cells x such that x is adjacent to c and x is not marked do

Mark x with the label of label(c)+1;

Q.InsertItem(x);
if x = s then break loop;

end for

end loop

// Backtrace:

Move along cells with strongly decreasing labels from s to t.

3 4 5 6

7

7

67 7
56 67 7
45 56 67 7
34 45 56 67 7

3 34 45 56 67 7
3 45 5 76347 6

3 45 56 67 7
67 7

3 4 5 66 77
3 44 55 66 77
4 55 66 77
5 66 77
6 77

t
s

t
s

t
s 1

2

1
1

2

2
1 1

2
2 1 22 1

1 2 1 2
22

2

s
t

Figure 1.16: Wave-Propagation.

20 Chapter 1 Labyrinths, grids and graphs

1.4.2 Competitive ratio of SmartDFS

The corridor of width 3, see Figure 1.7, indicates that the competitive ratio of SmartDFS should be better

than 2. SmartDFS runs 4 times though the corridor whereas the shortest path visits any cell only once.

This gives roughly a ratio of 4
3
. We will show that this is the worst-case for SmartDFS. The gap between

e 7
6

and 4
3

is small.

For the analysis we first give a precise definition of the structure of parts of gridpolygons which

will be explored in an optimal fashion. The SmartDFS Strategy does not make any detours within these

passages.

For a corridor of widths 1 this is abviously true. But also corridors of width 2 will be passed

optimally, since SmartDFS runs forth and back along different tracks; see Figure 1.17. We give a formal

definition of the narrow passages.

Definition 1.14 The set of cells that can be deleted such that the layernumber of the remaining cells do

not change are called narrow passages of P.

P2
P1

Figure 1.17: SmartDFS is optimal in narrow passages.

SmartDFS passes narrow passages optimally since they allow an optimal forth and back pass-through.

There are no additional detours at the entrance and exit of a narrow passage because they consist of cells

in the first layer. They can be considered as gates. The entrance and exit is always precisely determined.

The idea is to consider polygons without narrow passages first. There is a fixed relationship between

edges and cells.

Lemma 1.15 Let P be a simple gridpolygon without narrow passages and without a split-cell in the

first layer. We have

E(P)≤ 2

3
C(P)+6 .

Proof. A 3×3 gridpolygon has precisely this property, C(P) = 9 und E(P) = 12. Any gridpolygon with

the above conditions can be reduced by successively removing columns or rows such that in each step

the property remains true and such that always at least 3 cells and at most 2 edges will be removed. This

is an exercise below.

Starting backwards from the property E(P0 = 2
3
C(P0) + 6 we will maintain the bound E(Pi) ≤

2
3
C(Pi)+ 6 since we add at least 3 cells and add at most 2 edges. Finally, E(P) ≤ 2

3
C(P)+ 6 holds.

2

First, we show that the overall number of exploration steps of SmartDFS decreases for the given class

of polygons.

Lemma 1.16 A simple gridpolygon P with E(P) edges and C(P) cells, without narrow passages and

without a split-cell in the first layer well be explored by SmartDFS with no more than S(P) ≤ C(P)+
1
2
E(P)−5 steps.

1.4 Exploration of grid environments 21

c′

π′
s′

s

P′

Figure 1.18: A simple gridpolygon without narrow passages and no split-cell in the first layer has the property

E(P)≤ 2
3

C(P)+ 6. After the first coil SmartDFS starts in the 1-Offset P′. The return path to c′ from an arbitrary

point in P′ is shorter than 1
2
E(P)/2− 2.

Proof. From Theorem 1.13 we conclud S(P) ≤ C(P)+ 1
2
E(P)− 3. By the properties of P, SmartDFS

performs a full first round from s to the first cell s′ in the second layer. After that, in principle we start

SmartDFS again at s′ in a gridpolygon (1-Offset P′ of P); see P′ in Figure 1.18. P′ is path connected and

by Lemma 1.9 P′ has 8 edges less than P;

The cells in the first layer have been visited optimally the path length from s to s′coincidence with the

number of cells in the first layer. Finally, we have to count two additional steps from s′ to s. Altogether,

we require S(P)≤C(P)+ 1
2
(E(P)−8)−3+2 =C(P)+ 1

2
E(P)−5 steps. 2

With the statements above we will be able to prove the main result.

Mit diesen Vorbereitungen können wir die kompetitive Schranke beweisen.

Theorem 1.17 (Icking, Kamphans, Klein, Langetepe, 2005) The SmartDFS strategie for the exploration

of simple gridpolygons is 4
3
-competitive! [IKKL05]

Proof.

Let P be a simple gridpolygon. First, we remove the narrow passages from P. We know that the

entrance and exits over the gates by SmartDFS are optimal. We obtain a sequence Pi, i = 1, . . . ,k of

gridpolygons connected by narrow passages. See for example P1 and P2 in Figure 1.17.

We can consider the gridpolygons Pi separately. We can also assume different starting points. The

movement between the gates count for the required additional steps. It is sufficient to show S(Pi) ≤
4
3
C(Pi)− 2 for any subpolygon. This bound exactly holds for 3×m gridpolygons for even m; see Fig-

ure 1.19.

We show the bound by induction over the number of splil-cells.

s

optimal strategySmartDFS

s

Figure 1.19: In a corridor of width 3 and with even lenght the bound S(P) = 4
3

SOpt(P)− 2 holds.

Induktion-Base: If Pi has no split-cell, there is also no split-cell in the first layer. We apply Lem-

ma 1.16 and Lemma 1.15 and obtain:

S(Pi) ≤ C(Pi)+
1

2
E(Pi)−5

22 Chapter 1 Labyrinths, grids and graphs

≤ C(Pi)+
1

2

(
2

3
C(Pi)+6

)

−5

=
4

3
C(Pi)−2 .

Induktion-Step: If there is no split-cell in the first layer we can apply the same arguments as above.

Therefore, we assume that the first split occurs in the first layer. Two cases can occur as depicted in

Figure 1.20.

In the first case the component of type (II) was not visited before and we define Q := {c}. The second

case occurs, if the split-cell c is diagonally adjacent to a cell c′; compare Figure 1.20(ii), (iii) and (iv).

We build the smallest rectangle Q that contains c and c′. In case (ii) and (iii) Q is a square of size 4. In

case (iv) by simple adjacency Q is a rectangle and |Q|= 2.

Analogously to the proof of Theorem 1.13 we split the polygons into parts P′ and P′′ both containing

Q.

Here P′′ is of type (I) or (II) and P′ the remaining polygon. das Polygon der Komponenten vom Typ

(I) oder (II) und P′ das andere.

For |Q|= 1 (see Figure 1.20(i)) we have S(Pi) = S(P′)+S(P′′) and C(Pi) =C(P′)+C(P′′)−1. We

apply the induction hypothesis on P′ and P′′ (they have one split-cell less) and obtain:

S(Pi) = S(P′)+S(P′′)

≤ 4

3
C(P′)−2+

4

3
C(P′′)−2

≤ 4

3
C(Pi)+

4

3
−4 <

4

3
C(Pi)−2 .

For |Q| = 4 we argue that by the union we will save some steps that will occur for the separate

explorations. We consider P′ and P′′ separately, first. The movements from c′ to c (and c to c′) count in

both polygons. For the complete Pi the path from c′ to c (and c to c′) are given either P′ or in P′′, this

means that we save 4 = |Q| steps.

We have S(Pi) = S(P′)+ S(P′′)− 4 and C(Pi) = C(P′)+C(P′′)− 4. By induction hypothesis for P′

and P′′ we conclude:

S(Pi) = S(P′)+S(P′′)−4

≤ 4

3
C(P′)+

4

3
C(P′′)−8

=
4

3
(C(P′)+ C(P′′)−4)− 8

3

<
4

3
C(Pi)−2 .

The case |Q|= 2 is left as an exercise.

Altogether an optimal strategy requires ≥C(Pi) steps or ≥C(P) in total and we have a competitive

ratio of 4
3
. 2

Exercise 8 Analyse the remaining case |Q|= 2 in the above proof.

If we compare the result to Theorem 1.7 there is a gap of size 1
6

between 7
6

and 4
3
. Recently, both

parts have been improved. There is a lower bound of 20
17

and an upper bound of 5
4

shown by Kolenderska

et. al 2010. In principle the strategy is a local improvement of SmartDFS and the lower bound is an

extension of our construction. The result comes along with a tedious case analysis.

1.4 Exploration of grid environments 23

(i) (iii)(ii) (iv)

c

c′ Q

cc′Qc

P′P′

P′′ P′′
c

P′

P′′

c′

P′′

P′

Q

Figure 1.20: A gridpolygon Pi that is separated into components of type (I) or (II) at the split-cell. The rectangle

Q is always inside Pi.

s

Vaterzelle

aktuelle Zelle

(ii)(i)

D

2D
W

R

Figure 1.21: 2D-cells and D×D sub-cells.

1.4.3 Exploration of general gridpolygons

For the more general exploration of gridpolygons we first slightly change the model4: We consider an

agent that is located at the center of 4 cells of size D×D. The tool for the exploration still has size D×D

as before and moves freely around the agent. More precisely, we consider 4 sub-cells of size D×D and

unify them to a 2D-cell5; see Figure 1.21(i).

It can happen that for the 2D-cell, not all sub-cells belong to the initial gridpolygon, since some of

the sub-cells simply belong to the boundary. Such 2D-cell are denoted as partially occupied cells.

In Figure 1.21(i) all cells intersected by the original polygonal segments are partially occupied (com-

pare also reffigfigOnline/PolyToGrid on page 8). The agent is always located in the center of the 2D-cell.

Analogously to the SmartDFS model, the agents scans the four adjacent 2D-cells. The tool moves freely

around the agent, we would like the count the number of steps of the tool; see also Figure 1.21(ii).

The current cell of the agent is denoted as current cell. The parent cell of the agent is the cell where

he is actually coming from. In the beginning we initially an arbitrary adjacent 2D-cell as the parent cell.

The strategy “Spanning-Tree-Covering” (STC) constructs a spanning tree for all connected 2D-cells

that are also not occupied. The tool moves along the spanning tree by the Left-Hand-Rule. The con-

struction can be done fully online. The 2D-cells are detected by the Right-Hand-Rule. Obviously by

this approach the tool exactly visits any cell at most once by following the spanning tree. Figure 1.22(i)

shows an example for the efficient exploration of all non-occupied cells by 2D-Spiral-STC. As mentioned

before, for the start we can choose an arbitrary parent cell.

The disadvantage of 2D-Spiral-STC is, that we do not visit sub-cells by that tool which actually lie in

the connected component of the sub-cells. Now we relax the behaviour of 2D-Spiral-STC. The strategy

4We will see later that the change was only done for the reason of a convenient analysis and description.
5In the following a cell always denotes a 2D-cell.

24 Chapter 1 Labyrinths, grids and graphs

Algorithm 1.6 2D-Spiral-STC

2DSPSTC(parent, current):

Mark current as visited.

while current has unvisited neighbour cell do

• From parent search in ccw order for a neighbouring cell free, which is not marked as visited and

is not partially occupied.

• Build the spanning tree edge from current to free.

•Move the tool by Left-Hand-Rule along the spanning tree edge to the first sub-cell of free.

• Call 2DSPSTC(current, free).

end while

if current 6= s then

• Move by the Left-Hand-Rule along the spanning tree edge back from current to the first sub-cell

of parent.

end if

Algorithm 1.7 SpiralSTC

SPSTC(parent, current):

Mark current as visited.

while current has unvisited neighbour cell do

• From parent search in ccw order for the first neighbouring cell free.

• Build a spanning tree edgs from current to free.

•Move the tool along the spanning tree edge to the first sub-cell of free. The movement depends on

the local situation. For double-sided edges the tool moves by Left-Hand-Rule along the edge. For

single-sided edges the tool might change to the other (left) side of the spanning tree edge in order

to avoid an occupied sub-cell for reaching the corresponding sub-cell.

• Call SPSTC(current, free).

end while

if current 6= s then

•Move along the spanning tree edge back from current to the first possible sub-cell of parent. The

movement depends on the type of the edge, as mentioned above.

end if

1.4 Exploration of grid environments 25

s s

(ii)(i)

Figure 1.22: Examples for (i) 2D-Spiral-STC and (ii) Spiral-STC.

Spiral-STC (Algorithm 1.7) also constructs a spanning tree in an online fashion. But we also insert a

corresponding edge if a partially occupied 2D-cell contains sub-cells that are still reachable by the tool.

In this case the tool cannot always move the the Left-Hand-Rule along the spanning tree edge. The tool

has to avoid occupied sub-cells and visits some sub-cells more than once. For systematically analysing

the corresponding additional sub-cell visits of the tool we make use of the following notion:

Lokal unzusammenh”angendeEinseitige Kante
Zelle

Doppelseitige Kante

(iii)(ii)(i)

Figure 1.23: (i) Double-sided edge, (ii) one-sided edge, (iii) locally disconnected 2D-cell.

Definition 1.18 A spanning tree edge construced by STC in a gridpolygon P is denoted as

(i) double-sided edge, if all adjacent sub-cells belong to the gridpolygon P (Figure 1.23(i)),

(ii) single-sided edge, if at least one of the adjacent sub-cells is a boundary sub-cell of P (Figure 1.23(ii)).

Double-sided edges are handled in the same way as in the 2D-Spiral-STC strategy. Single-sided

edges impose a detour for the tool, some sub-cells will be visited more than once since the tool changes

to the other side of the spanning tree edge. For the analysis we will consider the corresponding cases

systematically. A special case occurs, if the situation imposes two spanning tree edges for the same cell

from different directions. The cell is locally disconnected in this case; see Figure 1.23(iii). This 2D-cell

will be visited twice from different directions. For simplicity we internally double the corresponding

vertex and the spanning tree has exactly one incoming edge for any vertex. For the analysis we have

to take care that we count the cell only once. An example of the execution of Spiral-STC is shown in

Figure 1.22(ii).

By the preference rule for the 2D-cells the Spiral-STC constructs spanning trees with many windings.

This is not always intended, especially for lawn-mowing or vacuum-cleaning a tool should try to avoid

so many turns. The number of turns might also be part of the cost model. The Scan-STC variant has

a fixed given preference for vertical or horizontal edges. We would like to make local decision for the

construction of spanning tree edges. In our examples we prefer a vertical scan of the gridpolygon. For

this we extend the sensor model and allow to have information about all diagonally adjacent 2D-cells of

a current cell.

The idea is that the construction of a horizontal edge will be postponed, if it is clear that we can also

reach the 2D-cell by another vertical spanning tree edge. To keep the rule simple we only look ahead as

26 Chapter 1 Labyrinths, grids and graphs

f ree

f ree+90

f ree current f ather

f ree+45

f ather

f ree+90 f ree+45

(i) (ii) (iii)

f ree+90f ree+45

f ree current f ather

f 0

f+45 f+90

c

current

Figure 1.24: Avoid horizontal edges with the Scan-STC.

indicated in Figure 1.24 (i) and (ii). Here we currently would like to build a horizontal edge. The agent

is located at cell current and is looking (in ccw order starting from father) for the first free cell free. If

there is a counterclockwise path from free over free+45 and free+90 back to the current cell, we change

the preference and build a spanning tree edge to free+90. Here free+45 lies on the sam row as free and is

the the next cell in ccw order from free. free+90 is the next cell in ccw order from free+45 in the same

column as current.

If the full turn exists, the cell free will also be reached from free+45 be a vertical edges and free+45

can be reached from free+90. Note that we have extended the sensor model in this case and also have

information about diagonally adjacent edges.

Analogously, we can also consider partially occupied 2D-cells and apply the same idea. For the

corresponding avoidance rule we consider the sub-cells c, f 0, f+45 and f+90 instead if the cells current,

free, free+45 und free+90; see Figure 1.24(iii).

By the above idea we could define a strategy 2D-Scan-STC that corresponds to 2D-Spiral-STC. We

skip this step and directly define a Scan-STC Algorithm that makes use of the sub-cells c, f 0, f+45 and

f+90 by the same arguments. If f+45 and f+90 are also free, we will reach f 0 from f+45 and in turn f+45

from f+90. Algorithm 1.8 summarizes this behaviour.

s s

(ii)(i)

Figure 1.25: Examplle for (i) 2D-Scan-STC, (ii) Scan-STC.

1.4 Exploration of grid environments 27

Algorithm 1.8 ScanSTC

SCSTC(parent, current):

Mark current as visited.

while current has unvisited neighbouring cell do

• From parent search in ccw order for the fisrt non-visited neighbouring cell free.

if Spanning tree edge from current to free is horizontal and sub-cells f+45 and f+90 are free then

free := free+90.

end if

• Build a spanning tree edge from current to free.

•Move the tool along the spanning tree edge to the first sub-cell of free. The movement depends on

the local situation. For double-sided edges the tool moves by Left-Hand-Rule along the edge. For

single-sided edges the tool might change to the other (left) side of the spanning tree edge in order

to avoid an occupied sub-cell and reach the corresponding sub-cell.

• Call SCSTC(current, free) auf.

end while

if current 6= s then

•Move along the spanning tree edge from current back to the first possible sub-cell of parent. The

movement depends on the type of the edge, as mentioned above.

end if

Theorem 1.19 (Gabriely, Rimon, 2000)

Let P be a gridpolygon with C sub-cells. Let K be the number of all sub-cells, which are diagonally

adjacent to an occupied (boundary) sub-cell6. The gridpolygons P will be explored by Spiral-STC and

Scan-STC in time O(C) and space O(C). There are no more than

S≤C+K

exploration steps, S, for the tool. [GR03]

Proof.

Correctness:

Both algorithms construct a spanning tree by DFS such that any 2D-cell which has reachable D sub-cells

will be visited. The tool moves along the spanning tree on both sides – as long as the path is not blocked

– and visits all sub-cells that are touched by the spanning tree.

Zelle ”Ubergr. Intern Gesamt Randzellen

1 0 1 1 2

2 1 2 3 3

3 1 2 3 3

4 1 1 2 2

5 1 2 3 3

s

5

1

3

4 2

Figure 1.26: Estimating the double visits of sub-cells by STC locally.

Path length:

The number of steps for the tool is essential the sum of the visited sub-cells C. If the tool changes to the

left side of a spanning tree a detour has to be made and some sub-cells will be visited more than once.

Beyond C we simply count the number of sub-cells that are visited more than once and locallly charge

the sub-cells of a 2D-cell for these visits.

6K can be estimated by the number of sub-cells in the first layer of P.

28 Chapter 1 Labyrinths, grids and graphs

0 0 2 1 1 2

1 1 2

1 0 1

(∗)

1 0 1

"U I R "U I R

"U I R

"U I R

"U I R

Zwei freie

Subzellen

Eine freie

Subzelle

1 1 2

0 1 3 1 2 3

Doppelseitige Kante Einseitige Kante

"U I R
0 0 0

"U I R "U I R

"U I RSubzellen

Vier freie

Drei freie

Subzellen

1 2 3
"U I R

1 2 3
"U I R

Figure 1.27: Analysis of STC, all possible cases.

We differentiate between inner double visits and intra double visits. The latter one occur during the

movement inside a 2D-cell if a sub-cell is visited again. The former one occur if we leave a 2D cell c

along the spanning tree to a neighbouring cell and the corresponding sub-cell was visited before. For this

double visit we also charge the 2D cell c, since it was responsible for the detour.

Any 2D-cell c is visited for the first time by an incoming spanning tree edge. The inner-cell double

visit will occur only if the cell c is left again along this edge. Figure 1.26 shows an example for counting

inner and intro double visits. For cell 1 sub-cell s is visited twice, an intra double visit. The sub-cell

above s is also visited twice, but by the movement back for 5 to 1 along the spanning tree edge. Therefore

2D-cell 5 is charged for this by an inner double visit.

The table of2D-cells Figure 1.26 shows the number of inner and intra double visits for any 2D-cell.

We charge the 2D-cells for these double visits. On the other hand, for any 2D-cell we also count the

number of sub-cells that are diagonally adjacent to a boundary sub-cell. The corresponding boundary

sub-cell need not lie inside the 2D-cell itself. Surprisingly, the sum of inner and intra double visits does

never exceed the number sub-cells with diagonally adjacent neighbours. This is also given in the table of

Figure 1.26.

For a full systematic proof we refer to Figure 1.27. Any 2D-cell c is visited by some spanning tree

1.4 Exploration of grid environments 29

edge for the first time and the inner double visits can only occur on this edge. Therefore it is sufficient to

consider the 2D-cell without other outgoing spanning tree edges. For any intra detours only sub-cells of

the current cell are responsible. For the inner detour only the parent cell was responsible.

We distinguish between double sided and single sided edges and between the number of boundary

sub-cells inside the corresponding 2D-cell c. We always count inner and intra double visits and compare

the sum to the number of sub-cells adjacent to boundary sub-cells.

For all reasonable cases the sum of double visits is always covered locally by the number sub-cells

adjacent to boundary sub-cells. The case marked with (∗) is a bit tricky. The corresponding 2D cell

might also be visited by another spanning tree edge. This is not critical because there is only 1 double

visit in this case for each sub-case. They can be handled separately.

Running time and space requirement

The tool performs at most C +K ≤ 2C steps. Any movement is computed locally in O(1) time. The

corresponding overall information required does not exceed O(C). 2

Finally, we consider the Scan-variants of the STC-Algorithms. We would like to give a rough estimate

for the efficiency in avoiding horizontal edges by 2D-Scan-STC.

C

Cℓ

Cr

CCℓ,1

Cr

Cℓ,2

Cℓ,3

(iii)(i) (ii)

C2,1

C2,2

C4,2

C4,1 C5,1

C4,4

C4,3

C5,2C3,2

C6C1

C3,1

c

Figure 1.28: (i) Columns and the change of connectivity, (ii) Columns without changes, (iii) Difficult online

situation.

We consider columns of the gridpolygon and from left to right we count the change of the connec-

tivity from a column to its neighbour on the right. For example on Figure 1.28(i) there is a numbering of

the columns and the number of different vertical components of the columns. From left to right we sum

up all differences in the number of components of a column to its neighbour. In Figure 1.28(i) column C1

has one component and in column C2 this component split into two components C2,1 and C2,2. This gives

a difference of 1. The components C5,1 and C5,2 of column C5 run together in C6 to a single component.

This also is a change of 1 in the difference. Of course also many parts might be involved. We count the

changes of any component separately. Let Z denote the sum of all these local changes.

The number Z is a measure for the additional horizontal edges of the spanning tree of Scan-STC against

an optimal number of spanning tree edges:

Theorem 1.20 (Gabriely, Rimon, 2000)

Let P be a gridpolygon. Let HOpt denote the minimal number of spanning tree edges among all 2D

spanning trees of P. Let Z be the above number of connectivity changes for the columns of the 2D-cells.

30 Chapter 1 Labyrinths, grids and graphs

2D-Scan-STC constructs a spanning tree with at most

HSTC ≤ HOpt +Z+1

horizontal edges. [GR03]

Proof.(Sketch)

If there is no change in a 2D column, the optimal spanning tree and 2D-Scan-STC will visit and leave

the column only once; compare Figure 1.28(ii). The main problem is that by 2D-Scan-STC a connected

component of a column will be left by the spanning tree to the same side more than once. This can only

happen, if there are changes in the connectivity; see Figure 1.28(iii). 2

Concluding remarks

Arkin, Fekete and Mitchell gave some approximation results for the offline exploration of gridpolygons;

see [AFM00]. Betke, Rivest und Singh considered a variant of the exploration problem. They introduced

the following piecemeal-condition: The agent has to explore an environment with rectangular obstacles

and has to return to the start from time to time (charging an accumulator); see [BRS94]. A strategy for

this problem for general grid-environments stems from Albers, Kursawe und Schuierer [AKS02].

1.5 Constrained graph-exploration 31

1.5 Constrained graph-exploration

We consider the problem of the exploration of an unknown graph G = (V,E) starting from some fixed

vertex s ∈ V . This means that we would like to visit all edges and vertices of G. First, we consider

unit-weights which means that any visit of an edge has cost 1. Different from the previous section we

consider a constrained version of the exploration, due to the following practical models. Let r denote the

radius or depth of the graph w.r.t. s. I.e., r is the maximal length of a shortest path from s to some vertex

v ∈V . Let us first assume that r is known, but not the graph itself.

1. The agent is bounded by a tether of length ℓ= (1+α)r (for example a cable constraint).

2. The agent has to return to the start after any 2(1+α)r steps (for example an accumulator has to be

recharged).

3. A large graph should be explored up to a given fixed depth d (for example for searching a close by

target).

The above third variant will be applied to a searching heuristic with increasing depth, later. First,

we show some simple simulation resutls. If an algorithm for the tether variant is known, one can also

establish an accumulator strategy with some extra cost.

Lemma 1.21 Given a tether variant strategy with tether length l = (1+α)r and overall cost T . For any

β > α there is an accumulator-strategy with cost
1+β
β−α T

Proof. We design the accumulator strategy by following the tether strategy. After any 2(β−α)r steps

we move back from the current vertex v to the start, recharge the agent and move back to v. Then we

proceed with the next step of length 2(β−α)r of the tether strategy path. In the tether strategy for any

vertex v, we are never more than (1+α)r away from the start. That is 2(β−α)r+2(1+α)r = 2(1+β)r
always result in correct loops. The strategy is correct.

On the other hand, we have cost T for following the tether path and additional cost for moving back

and force. We move back at most T
2(β−α)r times and require 2(1+α)r steps for any movement. This

gives total cost:

T +
T

2(β−α)r
·2(1+α)r = T

β−α+1+α

β−α
=

1+β

β−α
T .

2

Exercise 9 Given an accumulator strategy S with accumulator size 2(1+β)r and overall cost T . For a

given α > β design an efficient tether strategy that makes use of S so that the cost of the tether strategy

is f (α,β) ·T . Determine f (α,β) precisely.

We can also consider the Offline-variant of the problem. In this case the graph is fully known. To the

best of our knowledge the complexity of the Offline-variant (computing the best strategy) is not known.

Since in the case that the tether is very long, the Hamiltonian-path problem appears to be part of the

problem, the problem is assumed to be NP-hard.

If the optimal Offline-strategy is not known, we can design an Offline-strategy that approximates the

optimal strategy. We consider the accumulation variant and assume that the accumulator has size 4r.

Lemma 1.22 Let us assume that an accumulator of size 4r is given. There is a simple Offline algorithm

that explores a graph of depth r with no more than 6|E| steps.

32 Chapter 1 Labyrinths, grids and graphs

Proof. We consider the DFS walk among the edges of the graph which requires 2|E| steps. Now we split

this overall path into pieces of size 2r. Similarly to the simulation in the proof above we successively

move to the start vertices of these subpaths, follow the DFS path for 2r steps and return to the start

after that. In total the accumulator of size 4r is sufficient. Moving along the DFS path gives 2|E| steps.

There are no more than
⌈

2|E|
2r

⌉

sub-paths that require no more that
⌈
|E|
r

⌉

2r steps in total. We have
⌈
|E|
r

⌉

2r ≤
(
|E|
r
+1
)

2r ≤ 2|E|+2r which shows that 4|E|+2r ≤ 6|E| is sufficient. 2

From now on we consider only the tether variant, for the accumulation variant similar results can be

shown. A first simple idea is to take the tether length for the DFS walk into account.

Just performing DFS is not always possible. A BFS approach is always possible but results in too

many exploration steps; see Figure 1.29. Therefore we apply DFS with the tether restriction as given in

Algorithm 1.9. There is a backtracking step, if the tether is fully exhausted. We call this algorithm bDFS

for bounded DFS.

(i)

(ii)

S

S

Figure 1.29: (i) A Graph with n vertices and with depth r = 1, pure DFS would require a tether of length n−1. (ii)

A graph of depth n, BFS with a tether of length n requires Ω(n2) steps.

s 1 2 3 . . .

ℓ− 1

ℓ

v

. . .

Figure 1.30: bDFS kann einige Knoten nicht erreichen.

Algorithm 1.9 boundedDFS

bDFS(v, ℓ):

if (ℓ= 0)∨ (no adjacent non-explored edges) then

RETURN

end if

for all non-explored edge (v,w) ∈ E do

Move from v to w along (v,w).
Mark (v,w) as explored.

bDFS(w, ℓ−1).

Move back from w to v along (v,w).
end for

In general bDFS is not sufficient for the full exploration of a graph. For example in Figure 1.30 we

have the problem that the dark-colored vertices cannot be reached, if the algorithm first chooses the path

along the vertices 1,2, . . . , ℓ− 1, visits vertex l, v and s and winds back to the start s. The path from s

over v is short enough but will not be considered by bDFS.

1.5 Constrained graph-exploration 33

Therefore we would like to call bDFS from different sources. The aim is to achieve a constant

competitive algorithm. In Algorithm 1.10 we maintain a set of (edge) disjoint trees T = {T1,T2, . . . ,Tk }
with root vertices s1,s2, . . . ,sk, respectively. The trees still contain incomplete vertices where not all

adjacent edges have been visited. We choose a tree Ti with the minimal distance from s to root si among

all trees of T . From this tree we prune subtrees Tw j
with root vertices w j, so that w j is a certain distance

(minDist = αr
4

) away from s and Tw j
has a certain minimal depth (determined over minDepth = αr

2
).

Those trees will be inserted into T . The pruning forces the trees of T to have a minimum size, it is still

worth visiting them.

After pruning, the rest of Ti will be explored by DFS and if an incomplete vertex will be found, we

start bDFS with the current remaining tether length for the exploration of new edges. The newly explored

edges and vertices build a graph G′. If G′ has incomplete vertices, we construct a spanning tree T’ with

a root vertex s′, where s′ is the vertex in T ′ closest to s in the current overall explored graph G∗. T ′ will

be inserted into T . After the overall DFS (and bDFS) walk in Ti we delete all trees of T that are now

fully explored. Some of the trees in T might have common vertices. We merge those trees and build a

new spanning tree for them with a new root vertex.

A scheme of the algorithm is shown in Figure 1.31. We have done the prune step by values (2,4).
Otherwise, we have to build very large example graphs.

I. Auswahl next!

II. Pruning: (2,4), neuer Tree!

III. DFS im Restbaum! Enfernen!

IV. bDFS starten

V. Spanning Tree, neuer Tree!VI. Fertig! Entfernen!

s

T1

T3

s1

s2

s3

{T1,T2,T3}

T2

w

Tw

T ′

{Tw,T
′,T3}

Figure 1.31: The algorithm maintains a set of disjoint trees T = {T1,T2,T3} and choose the tree T2 with minimal

distance dG∗(s,si). After that the tree is pruned. Subtrees of distance 2 away from s2 with vertices inside that have

distance at least 4 from s2 are cut-off. After that DFS starts on the rest of T2 and starts bDFS on the incomplete

vertices. Here some new graphs G′ will be explored and we build spanning trees T ′ for them. Some trees in T get

fully explored. Tw und T ′ are added to T , the tree T2 is deleted.

In the following let dG′(v,w) denote the distance between vertices v and w in the subgraph or tree G′.
G∗ = (V ∗,E∗) denotes the currently known part of G.

The algorithm makes us of the following subdivision of vertices:

non-explored a vertex, which was never been visited before.

incomplete a vertex already visited before but some of the adjacent edges are still non-explored.

34 Chapter 1 Labyrinths, grids and graphs

Algorithm 1.10 CFS

CFS(s, r, α)

T := {{s}}.
repeat

Ti := closest subtree of T to s in G∗.
si := vertex of Ti closest to s n G∗.
(Ti,Ti) := prune(Ti, si,

αr
4

, αr
2

).

T := T \{Ti}∪Ti.

explore(T ,Ti,si,(1+α)r).

Delete fully explored trees from T .

Merge the trees of T with common vertices.

Define a root vertex closest to s in G∗.
until T = /0

prune(T , v, minDist, minDepth)

v := Wurzel von T .

Ti := /0.

for all w ∈ T with dT (v,w) = minDist do

Tw := subtree of T with root w.

if maximale Distanz between v and a vertex in Tw > minDepth then

// Cut-Off Tw from T ab:

T := T \Tw.

Ti := Ti∪{Tw}.
end if

end for

RETURN (T,Ti)

explore(T , T , si, ℓ)

Move from s to si along shortest path in G∗.
Explore T by DFS. If incomplete vertex occurs, do:

ℓ′ := remaining tether length.

bDFS(v, ℓ′).
E ′ := set of newly explored edges.

V ′ := set of vertices of E ′.
Calculate spanning tree T ′ for G′ = (V ′,E ′).
Define root vertex of T ′ closest to s in G∗

T := T ∪{T ′}.
Move back from si to s.

1.5 Constrained graph-exploration 35

explored a vertex, that was visited and all adjacent edges have been explored.

Additionally, for the bDFS walk we mark the edges as ’non-explored’ or ’explored’.

Lemma 1.23 The following properties hold during the execution of the CFS–Algorithm:

(i) Any incomplete vertex belongs to a tree in T .

(ii) Until G∗ 6= G, there is always an incomplete vertex v ∈V ∗ so that dG∗(s,v) ≤ r.

(iii) For any chosen root vertex si: dG∗(s,si)≤ r.

(iv) After pruning Ti is fully explored by DFS. All trees T ∈ T have size |T | ≥ αr
4

.

(v) All trees T ∈ T are disjoint (w.r.t. edges).

Proof.

(i) Follows directly from the construction of the trees by bDFS and Pruning. No incomplete vertex is

missing.

(ii) Assume that for all v ∈V ∗ we have dG∗(s,v)> r and let v be an incomplete vertex of V ∗. In G there

is a shortest path P(s,v) from s to v with length ≤ r. Along P(s,v) there is a first vertex w that does

not belong to G∗. Thus its predecessor w′ along P(s,v) belongs to V ∗ and is incomplete. We have

dG∗(s,w
′)≤ r.

(iii) Follows from (ii), the root of a corresponding tree T is always the vertex of T closest to s.

(iv) We show the property by successively considering the upcoming trees. Or by induction on the

number of pruning steps. In the beginning the algorithm starts with bDFS at the root s. Either, the

graph will be fully explored and we are done, or bDFS have exhausted the tether of length (1+α)r
and have visited more than (1+α)r edges. The single spanning tree T has size |T | ≥ (1+α)r > αr

4
.

Let us assume that the condition holds for the trees inside T and the next pruning step happens.

Now by the next iteration we are choosing tree Ti with root si closest to s among all trees in T . After

that we prune Ti. The rest of Ti has still size |Ti| ≥ αr
4

since we cut off subtrees Tw with distance

≥ αr
2

away from si. For a corresponding subtree Tw we conclude |Tw| ≥ αr
2
− αr

4
= αr

4
since there is

a vertex inside Tw that is at least distance αr
2

away from s. Now consider the remaining DFS/bDFS

combination on (the rest of) Ti. The distance from s to si is at most r.

Any incomplete vertex in the current Ti has at most distance αr
2

from si otherwise this vertex would

be part of a tree Tw that has to be considered in the pruning step. This means that at any incomplete

vertex there is a rest tether of length αr
2

which can be used for the bDFS part. If the exploration

results in another spanning tree T ′ with incomplete vertices, this tree has size at least αr
2

.

Finally fully explored trees are deleted from T which is not critical. Additionally, some other trees

might be merged and still have incomplete vertices. These trees only grow.

2

Finally, we show:

Theorem 1.24 (Duncan, Kobourov, Kumar, 2001/2006)

The CFS–Algorithm for the constrained graph-exploration of an unknown graph with known depth is

(4+ 8
α)–competitive. [DKK06, DKK01]

Proof. We split the cost for any appearing subtree TR. Let K1(TR) denote the cost for moving from s to si

in G∗. Let K2(TR) denote the cost of DFS for TR and let K3(TR) denote the cost for the bDFS exploration

done for the incomplete vertices starting at TR. The trees are edge disjoint.

The total cost is a sum of the cost for any TR. We have

∑
TR

K3(TR)≤ 2 · |E|, since bDFS only visits non-explored edges (twice).

∑
TR

K2(TR) = ∑
TR

2 · |TR| ≤ 2 · |E|, the cost for all DFS walks.

For K1(TR) we have K1(TR) = 2 · dG∗(s,si) ≤ 2r. The complexity of any TR is at least αr
4

which gives

|TR| ≥ αr
4

for the number of edges. We conclude r ≤ 4|TR|
α and

∑
TR

K1(TR)≤∑
TR

2r ≤ 8

α ∑
TR

|TR| ≤
8

α
|E|

36 Chapter 1 Labyrinths, grids and graphs

Altogether, the algorithm makes (4+ 8
α)|E| step whereas any optimal algorithm visits at least any edge

once. 2

In general we assume that α is a small constant with 0 < α < 1. The above proof works for any

α > 0. The cost of the algorithm for known depth r are within O(|E|/α). More precisely we can show

that actually O(|E|+ |V |/α) steps are made. For this we have a closer look at the cost. bDFS work on

the edges only. The DFS walk work on trees where the number of vertices is the same as the number

of edges. Some of these vertices appear in two trees, so by a factor of 2 we are on the save side. The

movements from s to si are analysed over the size of spanning trees, where vertices and edges are also

the same.

The cost K1(TR) and K2(TR) sum up to
(
2+ 8

α

)
2|V |.

Altogether there is an Θ(|E|+ |V |/α) algorithm for the exploration of arbitrary graphs.

Corollary 1.25 The CFS–Algorithm for the constrained graph-exploration of an unkown graph with

known depth has optimal exploration cost Θ(|E|+ |V |/α).

Now we have some possibilities for extensions. First, we assume that the depth of the graph is

unknown in the beginning. Next we would like to consider weighted edges.

1.5.1 Restricted graph-exploration with unknown depth

Let is now assume that the radius, say R, of the unknown graph G is not known. From a practical point of

view, spending some cable is costly and we would like to extend the tether only if it is necessary. A first

simple idea is that we guess the depth, say r, and successively double its length until the algorithm finally

explores the whole graph. Obviously, the repeated application of the CFS-algorithm runs in O(logr|E|)
step. As shown above we can also refine the analysis of this approach. For any bDFS step we make

use of the already visited edges and directly jump to incomplete vertices (now with larger tether length).

Therefore the bDFS steps are still subsumed by 2|E| steps. But we still have to take the movements to

the roots of the trees into account as well as the DFS movements on the new subtrees. Therefore we have

the following result.

Corollary 1.26 Applying the CFS–Algorithmus by successively doubling the current depth r gives an

algorithm that explores an unknown graph G with unknown depth R with Θ(|E|+(logR)|V |/α) steps.

We will now show that we can get rid of the log-factor by successively adjusting r appropriately. We

only exchange two calls in the main procedure. In principle, instead of the known value r we successively

make use of r := dG∗(s,si), which is the smallest distance from s to one of the roots of the trees in T .

More precisely, we exchange prune(Ti, si,
αr
4

, αr
2

) wird by prune(Ti, si,
αdG∗ (s,si)

4
,

9αdG∗ (s,si)
16

) and

explore(T , Ti, si, (1 + α)r) by explore(T , Ti, si, (1 + α)dG∗(s,si)). This means that the pruning-

step is done with the values
αdG∗ (s,si)

4
and

9αdG∗ (s,si)
16

and the eplore-step is done with tether length (1+
α)dG∗(s,si).

In the beginning we have dG∗(s,si) = 0, therefore we make use of some fixed constant c in the

beginning and use r := max(dG∗(s,si),c). Let dG∗(s,T) denote the shortest distance from s to some

vertex in T inside G∗.

Lemma 1.27 For the CFS–Algorithmus with unknown depth R we have the following properties:

(i) Any incomplete vertex belongs to a tree in T .

(ii) There is always an incomplete vertex v ∈V ∗ with dG∗(s,v) ≤ r, until G∗ 6= G.

(iii) For the closest root si we have: dG∗(s,si)≤ r.

(iv) For all trees T ∈ T we have |T | ≥ max(dG∗ (s,T),c)α
4

. After pruning the remaining tree will be fully

explored by DFS.

(v) All trees ever considered in T are (edge) disjoint.

1.5 Constrained graph-exploration 37

Proof. For the proof of (i),(ii),(iii) and (v) we apply the same arguments as in the proof of Lemma 1.23.

It remains to show that (iv) holds. The main difference is that the size of a tree T is directly correlated to

the distance from s to T , this is different from the previous argumentation.

Let us first show that the remaining tree Ti (after pruning) will be fully explored by DFS. For any

vertex v in Ti we have dTi
(si,v)≤ 9dG∗ (s,si)α

16
, otherwise v has been cut of by pruning. Thus we have

(1+α)dG∗(s,si)−dG∗(s,si)−dTi
(si,v)≥

7dG∗(s,si)α

16
,

which shows that the tether is long enough Ti will be fully explored by DFS.

By induction over the number of pruning steps we will finally show: ∀T ∈ T : |T | ≥ max(dG∗ (s,T),c)α
4

.

In the beginning we apply bDFS from the start with tether length c. Either we explore the whole

graph or we have |T | ≥ (1 + α)c > αc
4

for the resulting spanning tree T . For simplicity we assume

dG∗(s,Ti)> c from now on.

We would like to show that for any tree Tw, resulting from the pruning of some Ti, we have |Tw| ≥
dG∗ (s,Tw)α

4
. Also the remaining tree Ti has this property.

For the remaining tree Ti (after pruning), we conclude dG∗(s,Ti) = dG∗(s,si) and pruning guarantees

|T | ≥ dG∗ (s,T)α
4

. For a tree Tw pruned from Ti we have: |Tw| ≥ 9dG∗ (s,si)α
16

− dG∗ (s,si)α
4

= 5
dG∗ (s,si)α

16
by the

pruning values. Additionally, we have dG∗(s,Tw) ≤ dG∗(s,si)+ dG∗(si,w) = (1+ α
4
)dG∗(s,si), since the

root w of Tw is exactly
αdG∗ (s,si)

4
steps away from s. Für 0 < α < 1 we conclude: dG∗(s,Tw) <

5dG∗ (s,si)
4

and together with the above inequality we have |Tw|> dG∗ (s,Tw)α
4

.

Finally, we have to analyse the emerging spanning trees Tv, which will be constructed from the bDFS

steps starting during the DFS walk in Ti. Such a tree Tv starts at some incomplete vertex v in Ti. We

have dG∗(si,v) ≤ 9αdG∗ (s,si)
16

, otherwise v would have been pruned and could not be a leaf of the rest of Ti

any more. Thus we have dG∗(s,Tv)≤ dG∗(s,si)+dG∗(si,v) <
25dG∗ (s,si)

16
or dG∗(s,si)>

16dG∗ (s,T
′)

25
. If Tv is

fully explored, we are done, since the tree will be deleted. Assume that Tv still has incomplete vertices.

As mentioned above we have dT (si,v) ≤ 9αdG∗ (s,si)
16

. Starting from v there was a remaining tether length

of
7αdG∗ (s,si)

16
for the construction of the incomplete Tv, which gives |Tv| ≥ 7αdG∗ (s,si)

16
. Application of

dG∗(s,si)>
16dG∗ (s,Tv)

25
gives |Tv|> 7αdG∗ (s,Tv)

25
> dG∗ (s,Tv)α

4
. Either we have explored everything behind v or

the spanning tree Tv has size |Tv|> dG∗ (s,Tv)α
4

.

We have considered any emerging T ∈ T ! 2

Theorem 1.28 (Duncan, Kobourov, Kumar, 2001/2006)

Applying the CFS–Algorithm with the adjustments above results in a correct restricted graph-exploration

of an unknown graph with unknown depth. The algorithm is (4+ 8
α)–competitive. [DKK06, DKK01]

Proof. We apply the same analysis as in the proof of Theorem 1.24. For the analysis of the movements

from s to the roots of the trees we make use of the correlation |TR|> dG∗ (s,TR)α
4

. 2

For the number of steps we can also refine the analysis, analogously.

Corollary 1.29 The above CFS–Algorithm for the restricted exploration of an unknown graph with

unknown depth requires Θ(|E|+ |V |/α) exploration steps, which is optimal.

Finally, we would like to argue that the usage of a look-ahead of αr is necessary for attaining linear

optimal exploration cost (i.e., in comparison to |E| and |V |. This can be shown for the accumulator

variant as follows. First, it is clear that an accumulator of size 2r is not sufficient for exploring all edges.

The graph in Figure 1.32 has depth 6, but exploring all edges requires an accumulator of size 13.

This means that an accumulator size 2r+1 is necessary. We show that an accumulator of size 2r+d

for constant d is not sufficient in the sense of performing no more than C · |E| exploration steps.

Lemma 1.30 For the accumulator variant with accumulator size 2r+d for constant d, there are exam-

ples do that any algorithm attains at least Ω
(

|E| 32
)

exploration steps.

38 Chapter 1 Labyrinths, grids and graphs

S

Figure 1.32: A graph of depth r = 6 that cannot be explored by an accumulator of size 2r.

Proof. We consider the following example as given in Figure 1.33. Starting from s there is a path of

length n
2

that visits a clique of size n
2
+ 1. Moving forth and back along the path requires n steps, the

depth of the graph is n
2
+1. Exploration with accumulator size n+2+d means that we have to visit the

clique Ω
(

n2

d

)

times since the clique has Ω
(
n2
)

edges. This gives Ω
(

n2

d
·n
)

= Ω
(
n3
)

exploration steps.

The statement follows from |E| ∈ Θ(n2). 2

S

Figure 1.33: A graph with n+ 1 = 13 vertices. A path of length n
2

visits a clique of size n
2
+ 1. Any accumulator

strategy with accumulator size n+ 2+ d requires Ω(n3) steps.

With a similar argument we conclude that an sub-linear extension of the accumulator, i.e., size 2r+
o(r), is not sufficient for attaining a linear cost strategy. Let us briefly repaet the small-o notation. For real

valued functions or series f and g we define f ∈ o(g), if and only if limr→∞
f (r)
g(r) → 0 holds. Therefore we

conclude r ∈ o(r2), c ∈ o(r) for any constant c and also 1
r
∈ o(1). By the above arguments and example

we can show that Ω
(

n3

f (n)

)

exploration steps are necessary for an accumulator of size n+2+ f (n). For

f (n) = n1−ε (this means f ∈ o(n)) we have to perform Ω(|E|1+ε) exploration steps.

Note, that for the tether variant up to our knowledge there is no such statement that a tether of length

r+o(r) is necessary for attaining O(|E|) exploration cost.

We have shown that we can explore any graph (online and offline) with at most Θ(|V |+ |E|) explo-

ration steps. These are the pure cost for the motion of the agent. In the literature this is also denoted

as the mechanical cost; see also [DJMW91]. Besides, there are also some computational cost, for the

planning and preparation of the strategy.

For example the computational cost of the CFS-Algorithm have to be analysed for the following

tasks:

• Build the spanning trees

• Update the shortest paths to the trees of T

• Merge the trees

• Detect fully explored trees

• Prune a tree

• Maintain the list T

• Apply DFS/bDFS

1.5 Constrained graph-exploration 39

For unit-lenght edges some of the above tasks can be done very efficiently. The overall approach can

be easily extended to weighted graphs (positive edge weights).

Exercise 10 Analyse the computational cost for the CFS-Algorithm in O−notation for |E| and/or |V |.

Exercise 11 Show that the CFS-Algorithm approach also works for graphs with positive edges weights.

How do we have to adjust the CFS-Algorithm?

1.5.2 Mapping of an unknown graph

Finally, in this section we would like to show the influence of different capabilities of the agent. Up to

now we assumed that an already visited vertex or edge will be recognized at the next visit. This means

that we have marked any visited edge and vertex.

Let us now assume that the agent cannot mark parts of the environment. We do not have any land-

marks. We still assume that we have enough storage for constructing the sub-graph detected so far.

The following model is taken from Dudek et al.; see[DJMW91]. The agent has no orientation and

no compass. At any vertex the outgoing edges are presented in the same order. This order need not

represent a planar embedding. If the agents visits the vertex from different incoming edges, the order

will be consistent. This means that there is a fixed cyclic order, the relative presentation of the order

stems from the edge where the agent currently comes from. Figure 1.34 shows an example of a relative

order. By this order, the agent knows where he was coming from and can also return to this vertex. Since

the storage is not limited, it is possible to remember a return path. Let us for example assume that the

agent visits vertex v2 by edge e1 and then visits the second edge e3 in ccw-order from e1. If the agent

moves back along e3 to v2, it already knows that it was recently coming from the first edge in ccw order,

which is e1. The agent can make use of this return path. If the agent visits a vertex in a forward step, it

has no idea which of the vertices the visited vertex actually is.

e8

e6

e9

e10

v2

v5

v3

e4

e11

e3

e9

e10

e1
e4

e2
e3

e3

e8

e11

e5

e4

e6

e5

e7

e1

v1
v1

v4

v5 v6

v2

v3

e2

e1

e5

e7

Figure 1.34: A graph G = (E,V,S). A local cyclic order need not correspond to the embedding of the graph.

Is it possible to build a map of the graph and to locate oneself inside the graph? The offline input is

a triple G = (V,E,S), where by S for any vertex the cyclic local order of the edges is given.

First, it is easy to see that without further capabilities, one can not fully detect a given graph. Fig-

ure 1.35 shows two different regular graphs of fixed degree 3. For an agent the information on any vertex

is exactly the same. It is not possible to distinguish between the two variants. At least one marker is

necessary.

Corollary 1.31 Let G = (E,V,S) be a graph with local cyclic edge order- Without a marker an online

agent cannot build a correct map of the graph.

40 Chapter 1 Labyrinths, grids and graphs

Figure 1.35: Two different regular graphs of degree 3, an agent cannot distinguish them without a marker.

Exercise 12 Give a formal argument that the graphs in Figure 1.35 are different. Which class of graphs

can be correctly detected by an online agent without a marker?

A single marker (or pebble) is sufficient as shown by Dudek et al. [DJMW91]. We describe the

corresponding Marker-Algorithm. The algorithm maintains the current known graph G∗ and a list L of

non-determined (seen but not correctly detected) edges. In the beginning the starting vertex is known

and its outgoing edges belong to L. They are given in the cyclic order.

In the main step, the algorithm choose an edge e of L starting at a detected vertex b and moves to a

vertex u along the edges e = (b,u). Now the agent sets the marker on u, moves back to b along e and

searches for the pebble in G∗.

Case 1: The pebble was not found in G∗. In this case we add the edge e = (b,u) to G∗ w.r.t. the cyclic

order. All outgoing edges of u different from e will be inserted into the list L of non-determined edges.

Case 2: The marker has been found at some vertex v ∈ G∗. If there is more than one non-determined

outgoing edges at v = u, we cannot precisely detect e. Therefore we take the marker, move back to b,

place the pebble there, move back to v again and successively check the non-determined edges. Finally,

we will detect the edge e and add it to G∗ by the local order.

The above algorithm is simple and correct. By construction in any step an additional edge will be

correctly detected. The number of exploration steps is restricted by O(|E| × |V |) and the same holds

for the computational cost. We assume that the graph is not a multigraph and has no loop edges (v,v).
Besides, we assumed that any edge has unit-length.

Theorem 1.32 (Dudek, Jenkin, Milios, Wilkes, 1991)

Let G = (E,V,S) be a graph with given cyclic local order of the edges. By the use of one marker it is

possible to fully detect the structure of the graph by online navigation with O(|E|×|V |) exploration steps

and also overall O(|E|× |V |) computational cost.

Proof.

Let G∗ = (V ∗,E∗,S∗) be the current graph during the execution of the Marker-Algorithm. Setting

the marker has cost O(1), searching for the marker in G∗ can be done by DFS by O(|V ∗|) steps. Moving

back and force along a path can be done in O(|V ∗|) steps as well. The traversal cost are considered for

any edge, which gives O(|E|× |V |) steps in total.

For unit-edge length the computational cost are precisely the same for any edges we have to compute

the shortest paths between two vertices. The effort is bounded by O(|V ∗|). This gives O(|E|× |V |). 2

Exercise 13 Explain why the cyclic order of the edges is necessary for the above Marker-Algorithm.

Where is it used during the execution of the algorithm?

1.5 Constrained graph-exploration 41

Exercise 14 Analyse the mechanical and the compuational cost of the marker algorithm for graphs with

positive edge weights.

42 Chapter 1 Labyrinths, grids and graphs

Chapter 2

Polygonal enviroments

In this chapter we turn over to planar environments modelled by (a set of) simple polygons. We assume

that a set of simple polygons Pi for i = 1, . . . ,k is given. Two polygons do neither intersect nor touch each

other. The number of polygons is finite in the sense that any circle of fixed radius contains only finitely

many obstacles Pi.

In the following sections an agent tries to escape from a labyrinth (modelled by polygons) or tries to

find a target t in a polygonal environment. We assume that the agent is point-shaped and thus consider

curves in the plane. From a practical point of view one might think that a physical robot somehow

follows the corresponding curve without actually running precisely on it. Additionally, in the followning

configurations, the agent has only a limited storage.

We make use of the following conventions. If the coordinates of the target are given, the task of the

agent is denoted as “Navigation”. On the other hand, if the coordinates are not known the task of the

agent is “Searching”. We will consider different sensor models.

Some of the following algorithms – for example the Plegde-algorithm and some Bug-Variants – have

been implemented as interactive Java-Applets, see

http://www.geometrylab.de/

2.1 Escape from the labyrinth

The task of the agent is to escape from a polygonal environment. In the geometric sense the agent

escapes, if it finally hits a circle that contains all obstacles.

The agent is point-shaped and makes use of a touch-sensor for following the wall by Left-Hand-Rule

or Right-Hand-Rule. Additionally, we allow that the agent can count its total turning angles in a single ;

see Figure 2.2(i). The agent realizes when it hits the enclosing circle. In this case the agent successfully

escaped from the labyrinth.

2.1.1 Pledge-Algorithm

Algorithm 2.1 Pledge-Algorithmu

1. Choose direction ϕ, turn agent into direction ϕ.

2. Move into dircetion ϕ, until an obstacle is met.

3. Turn right and follow the wall by Left-Hand-Rule.

4. Follow the wall, sum up the overall turning angles, until the angular counter gets zero, in this case

GOTO (2).

44 Chapter 2 Polygonal enviroments

(ii) Hier nicht(i) Hier funktioniert die ”Linke-Hand-Regel”

s s

Figure 2.1: Simple strategies cannot be successful.

Note that, simple counting schemes or movements cannot succeed. For example, following the wall

by Left-Hand-Rule until the agent points again into direction ϕ and leave the obstacle right now can

result in infinite loops; see Figure 2.2(ii). Just following the boundary could let the agent stuck inside the

labyrinth; see Figure 2.1.

s

(i)

s

(ii) (iii)

Winkelz”ahler = 0

+

+
+−

−

Figure 2.2: (i) Angular counter. (ii) Leave-condition “angular counter mod 2π = 0” is not sufficient. (iii) The

agent cannot escape.

The following simpe Pledge-Algorithm (Algorithm 2.1) solves the problem. For the correctness proof

we require structural properties.

Lemma 2.1 The angular counter of the Pledge-Algorithm never attains a positive value.

Proof.

• The angular counter is initialized by zero.

• After hitting an obstacle, the counter gets negative by the first right turn.

• The counter changes continuously, the agent leaves the obstacle if the counter gets zero again.

⇒ the statement is true.

2

Lemma 2.2 If the agent does not leave the labyrinth by the Pledge-Algorithm, at the end there will be

a finite path π◦, so that the agent follows this path infinitely often.

Proof. The path generated by the Pledge-Algorithm is a polygonal chain. The set of vertices S stem from

the vertex set of all obstacles plus vertices inside edges that occur when the algorithm leaves an obstacle

at a vertex and hits an edges afterwards. The algorithm leaves an obstacle only at a vertex. Thus the

overall number of possible vertices is bounded. If the Pledge leaves an obstacle at the same vertex twice,

after that the same path π◦ will be used again and again, since the algorithm is deterministic and we left

the same vertex with the same counter twice.

2.1 Escape from the labyrinth 45

Therefore, if such path does not exists and the agent is not successful, finally the path will not leave

an obstacle anymore. Obviously, the path π◦ exists in this case. 2

Lemma 2.3 Assume that the agent does not leave the labyrinth by the Pledge-Algorithm, the above

mentioned finite path π◦ does not have self-intersections.

Proof. An intersection can only occur at the boundary, since all movements (segments) in the free space

are arranged in parallel. 1

Let us assume that a part B of π◦ intersects with a former path A of π◦ at the boundary of some Pi.

This means that there is a point z ∈ Pi where B (running from the free space) hits A for the first time. The

corresponding segment e ∈ Pi points into a fixed direction. Therefore after turning, the turning angle,

CB(z
′), of B at some point z′ ∈ e closely behind z and the turning angle, CA(z

′), differ by 2kπ for some

k ∈ ZZ. If e cause turning angle −β for B at z, we have CB(z
′) =−β and CA(z

′) =−β+2kπ with k ∈ ZZ.

For k > 0 we have:

CA(z
′) =−β+2kπ >−π+2π = π � by Lemma 2.1.

For k = 0 it is clear that CA(z
′)=CB(z

′) and A and B will never diverge, this contradicts the given situation

that A and B are parts of π◦.

From k < 0 we conclude CA(p) <CB(p) for all points p between z′ and the first point z′′, where the

paths of A and B separate. From CA(p) < CB(p) we conclude that at z′′ the path B has CB(z
′′) = 0 and

leaves the obstacle. 2

Finally, we conclude:

Theorem 2.4 (Abelson, diSessa)

For any given polygonal labyrinth, the Pledge-Algorithm will be able to escape from the labyrinth from

any starting point, from which a successful path exists. [Ad80]

Proof. Assume, that the agent is not successful in the given situation. By Lemma 2.2 follows the finite

path π◦ again and again, and the path π◦ has no self-intersections. Either the agent runs along π◦ in

ccw-order or in cw-order. In ccw-order the angular counter will increase by +2π in any round, which

contradicts Lemma 2.1. In cw-order the angular counter will decrease by−2π in any round, thus at some

point, the agent cannot leave an obstacle any more and in turn π◦ already belongs to a single obstacle.

The agent follows the wall of an obstacle by Left-Hand-Rule and in cw-order, this can only mean that

the agent is enclosed by the obstacle; see Figure 2.2(iii). There is no way out of the labyrinth from the

given starting point. 2

2.1.2 Pledge-Algorithm with sensor errors

The correctness proof of the Pledge-Algorithm (Theorem 2.4) make use of the assumptions that a point-

shaped agent counts the angles without any errors and moves precisely into a specified starting direction.

setzt voraus, dass der Roboter punktf”ormig ist und fehlerfrei arbeitet. As already mentioned physically

the agent need not be a point, we can assume that the agent requires some room for its movement and in

principle follows a curve calculated by the Pledge-Algorithm. The main problem is that the curve itself is

not computed exactly by the robots abilities. For example the agent cannot precisely measure the turning

angles at the boundary and cannot precisely follow a direction.

If the agent makes gross faults, we cannot assume that the pledge-like behaviour will succeed. Is

there an error bound for the sensors that still allows to escape by a pledge-like behaviour?

1All segments that are not part of the boundary of some Pi.

46 Chapter 2 Polygonal enviroments

The general idea is as follows. We would like to design a class of curves

K of the configuration space. Such a curve will be computed by an agent

with sensor errors and imprecise measurements. Any curve from K represents

a possible path for the escape. As mentioned above, the agent is guided by

the computed curve and moves close to it. We would like to define sufficient

conditions for the curves, such that the escape is guaranteed, if a corresponding

path exist. The curve always have precise orientation. Its computation might

be erroneous.

C ∈K

Pi

R

As the curves guides the agent, for convenience, we can consider curves in the

configuration space by C(t) = (P(t),ϕ(t)) where P(t) = (X(t),Y (t)) is the location

in the work space and ϕ(t) the current turning angle. Note that two full turns will

result in a turning angle of 4π instead of zero. Therefore ϕ(t)∈ IR! A configuration

(x,y,ϕ) is half-free, if the curve touches an obstacle in the work space and free, if

no obstacle in the work space is met. The set of all half-free points is denoted by

Chalf whereas the set of all free points is denoted by Cfree. Points, where the curve

moves from Cfree to Chalf are called Hit-Points, hi. Points, where the curve leaves

Chalf and enters Cfree are denoted as Leave-Points, ℓi. For simplicity, we will also

R

t2

t1

= 4π

= 0
ϕ(t1)

ϕ(t2)

denote the corresponding time parameter by hi or ℓi, respectively.

The Pledge-Algorithm has two movement modi. Either the agent follows

the wall and counts turning angles or the agent moves in the free space. Both

movements can be erroneous, the agent diverges from the starting direction in

the free space and drifts off or the agent cannot count turning angles precisely

and will leave the obstacle earlier or later than in the original pledge path.

ℓi

In principle we have to avoid that the agent moves in infinite loops. The

figure shows that a large drift can easily result in a loop. The error of the agent

is too large. But also a small deviation in the free space after each leave-point

can sum up to a large total drift and an infinite loop. Figure 2.3 shows an

example where there are small drifts after each leave that finally results in an

Pi

infinite loop. This means that the direction in the free space should be globally stable.

s

Figure 2.3: Small deviations sum up to a large deviation.

Additionally, for leaving the environment it is highly recommended that the agent at least moves into

a certain global direction. One might also think that an erroneous compass will at least allow us to move

generally into a half-plane. Therefore we require a Cfree-condition:

∀t1, t2 ∈C : P(t1),P(t2) ∈ Cfree⇒ |ϕ(t1)−ϕ(t2)|< π

which guarantees that the angular counter in the free space maximally differs from the starting direc-

tion ϕ(s) only by a fixed value. If we make use of a compass it seems to be reasonable to think that we

can guarantee ∀t : ϕ(t) ∈]− π
2
,+π

2
[in the free space for starting direction zero.

2.1 Escape from the labyrinth 47

tk

+π+ ε

hk

−π

− π
2

+π

(i) (ii)

p

0

s

0

0

hi

q − π
2− 3

2
π

hi
p

0

0

tk

hk

q

0
s

− π
2
− ε+ π

2

ℓk−1

Figure 2.4: A local overturn of the angular counter can result in infinite loops.

Unfortunately, the Cfree-condition is not sufficient. We have to combine it with the angular counter at

the obstacles. Figure 2.4 shows two examples where the agent overturns the counter at the obstacle for

a while (because of sensor errors) but obtains overall precise values later for the leaving condition. This

has nothing to do with the free space condition. The infinite loop happens at the obstacle. In this case

the agent passes the first true leave-point p and leaves the obstacle later at a point q which is also a legal

leave-point.

In Figure 2.4(i) by the overturn the curve mets the same obstacle hk at again. In Figure 2.4(ii) by

the overturn the agent first visit another obstacle but then returns via some leave-point ℓk−1 again to the

starting obstacle at hk. In both case P(hk) is visited twice and during the first visit at tk the angular

counter was overturned. In the left hand side figure the angular counter at tk is larger than π, in the right

hand side figure the counter at tk is +π
2
. Figure 2.4(ii) shows a second error source. Since the angular

counter at hk is −π
2
− ε both errors also sum up to an error larger than π. We state that for the hit-point

hk the angular counter of a previous visit was overturned. Together with the error at hk there is an overall

overturn larger than π.

We subsume the requirement in the Chalf-condition:

∀hi, t ∈C : P(t) = P(hi)⇒ ϕ(t)−ϕ(hi)< π .

We can also think about the compass with a deviation of π/2 into both directions. This means that

we can overturn the angle counter at the obstacle by less than π/2. Together with a deviation of less than

−π/2 in the free space we might hit this point again but ϕ(t)−ϕ(hi)< π holds.

Definition 2.5 Let K be a class of curves in Cfree∪Chalf such that any curve from K fulfils the following

conditions:

(i) Parameterized pledge like curve with turn-angles and position:

C(t) = (P(t),ϕ(t)) with P(t) = (X(t),Y (t))
(ii) At the boundary the curve surrounds obstacles by Left-Hand-Rule.

(iii) Any leave-point is a vertex of an obstacle.

(iv) Cfree-condition holds: ∀t1, t2 ∈C : P(t1),P(t2) ∈ Cfree⇒ |ϕ(t1)−ϕ(t2)|< π

(v) Chalf-condition holds: ∀hi, t ∈C : P(t) = P(hi)⇒ ϕ(t)−ϕ(hi)< π

Obviously, the path constructed by the error-free Pledge-Algorithm does belong to K . For the correctness

proof that any curve of K that is constructed in a pledge-like fashion will escape from the labyrinth. We

show some important structural properties of curves in K .

Lemma 2.6 A curve C ∈ K has no self-intersection.

48 Chapter 2 Polygonal enviroments

(ii)

P(t1) = P(t2)
P(t1) = P(t2)

P(t0)

P(t0)
P(t3)P(t3)

(i)

Figure 2.5: The difference between (i) crossing and (ii) touching at t2.

Note that a curve from K might touch itself; see Figure 2.5.

Proof. Assume that C has an intersection, consider the first intersection. There are parameter t1 and t2
with t1 < t2 and P(t1) = P(t2) and the first intersection occurs at P(t2).

This means that between t1 and t2 there is a cw or ccw turn. If the intersection lies in the free space,

obviously the Cfree-condition does not hold. Thus we can assume that P(t2) is in Chalf holds. Consider

the case of a cw loop as depicted in Figure 2.6.

t1 P(t1) = P(t2)

γ

(i) (ii)

t1

t2t2

hi

hk

P(t1) = P(t2)

γ

hk

tk

hi

Figure 2.6: Cw loop and two cases.

The curve hits the obstacle at hi, follows the wall, leaves the obstacle at time t2 comes back to the

obstacles at hk > hi and has an intersection at t2; see Figure 2.6(i). If the point P(hk) was not visited

between hi and t1 there is only a touching event at t2; see Figure 2.6(ii).

Let ϕ(h+k) deonte the angular counter after the agent turns into the direction of the corresponding

edge. we have ϕ(h+k) = ϕ(hk)+ γ, where γ denotes the turning angle at the edge. We have −π < γ < 0.

Additionally, by the full cw turn we conclude ϕ(h+k) = ϕ(tk)−2π. Also the Chalf-holds and we obtain:

ϕ(tk)−ϕ(hk)< π

⇔ ϕ(h+k)+2π−ϕ(hk) = ϕ(hk)+ γ+2π−ϕ(hk)< π

⇔ γ <−π �

Similar arguments hold for a loop in ccw order, which is an exercise. The first intersection cannot

exists. By induction there is no intersection at all. 2

Lemma 2.7 A curve C ∈ K hits any edge of the environments at most once.

Proof. Assume that a single edge e has two hit-points. After the first hit hi of edge e the curve can only

leave the obstacle at a vertex and then comes back to e at hk; see Figure 2.7.

In P(hi) and P(hk) the agent turns clockwise in order to follow the edge e which gives turning angles

−π < γi,γk < 0. Let ϕ(h+i) and ϕ(h+k) denote the turning angles as in the proof of Lemma 2.6 (turning

angle directly after the hit-point). Let w. l. o. g. ϕ(h+i) = 0.

In h+i and h+k the curve follow the edge e, and the direction differs only by 2 jπ for some j ∈ ZZ This

means ϕ(h+k) = 2 jπ, j ∈ ZZ.

For j 6= 0, and with ϕ(hi) = −γi and ϕ(hk) = ϕ(h+k)− γk we conclude |ϕ(hk)−ϕ(hi)|= |2kπ− γk +
γi|> π, which contradicts to the Cfree-condition.

2.1 Escape from the labyrinth 49

ℓ

γk

hk

ℓ

(i) (ii)

ee
hi

γiγk

hi
hk

γi

Figure 2.7: A curve from K hits any edge once.

Therefore we conclude j = 0 and also ϕ(h+k) = 0. But we can argue that there be a full cw or ccw

turn from P(hi) to P(hk) without intersections; see Figure 2.7. The curve C made a full turn with angular

counter change of ±2π. This means that ϕ(h+k) =±2π should hold. � 2

By Lemma 2.7 we can now prove that the condition from Definition 2.5 are sufficient. First, we

require a helping lemma. If the curve gets stuck onto a single obstacle, the obstacle should enclose the

curve.

Lemma 2.8 If a curve C ∈K does not leave an obstacle anymore the curve is enclosed by the obstacle.

Proof. If the curve does not leave an obstacle after the last hit-point, the path along the boundary is

repeated infinitely often. The path can be in cw or in ccw order which means a counter change of +2π

for ccw order or a counter change of −2π in cw order for any round. In the first case at some point

the counter gets arbitrarily large for any point on the boundary. So also for the last hit-point and the

Chalf-condition is violated. This means we can only have a cw order loop and by the Left-Hand-Rule the

curve has to be enclosed by the obstacle. 2

Theorem 2.9 (Kamphans, Langetepe, 2003)

An agent, who follows a path from C ∈ K will escape from any labyrinth and from any position, if an

escape path exists. [KL03]

Proof. If there is an escape path the agent and the curve is not enclosed by an obstacle. Therefore the

curve C ∈K will leave any obstacle after a while. Since any edge is hit at most once by Lemma 2.7 there

will be no hit any more after a while. The Cfree-condition takes care that the agent steadily moves into a

halfplane w.r.t. a given direction. Thus we will escape from the environment. 2

2.1.3 Applications

We would like to consider the impact of Theorem 2.9. Let us first assume that we make use of a compass

for counting the total turns around the obstacles and for holding the direction in Cfree. If the deviation

from the starting direction is never larger than (−π/2,π/2), such a compass will help us leaving the

labyrinth.

In this case in Cfree we can guarantee an angular range (−π
2
,+π

2
). Along the boundary the absolut

error is smaller than |π
2
|, the maximal positive value along the boundary is smaller than +π

2
, the minimal

value in Cfree is larger than +π
2
, this yields the Chalf-condition.

∀hi, t ∈C : P(t) = P(hi)⇒ ϕ(t)−ϕ(hi)< π !

Corollary 2.10 The usage of a compass with absolut deviation smaller than π
2

will help to leave a

labyrinth by a pledge like algorithm.

Next assume that we would like to make use of small deviations of the environment itself. Therefore,

we consider obstacles that consists of axis-parallel edges, only. For such orthogonal polygons, we can

50 Chapter 2 Polygonal enviroments

simply sum up the reflex vertices (inner angle > π, +1) and the convex vertices (inner angle < π, −1) as

indicated and will leave an obstacle with counter value 0; see Figure 2.8(i). If we guarantee a deviation

in the range (−π
2
,+π

2
) in the free space, we can successfully apply the pledge algorithm. After a hit, we

only have to find out whether the edge is horizontal or vertical. For vertical edges we simply slip along

the edge and wait for the next hit. Thus we start the movement along the boundary with angular counter

+1, following a horizontal edge.

+

−

−

− −
(i) (ii)

e1

e2

div(e1)

div(e2)

0

0

+

++

+

−

Figure 2.8: (i) Counting the angles in orthogonal polygons, (ii) pseudo-orthogonal polygon with deviation div.

More generally for such a counting argument we have to take care that: Folgende drei Bedingungen

sind also einzuhalten:

1. Reflex and convex vertices can be distinguished: Count the rotation correctly.

2. Maximal deviation from the starting direction. Interval of size π.

3. Distinguish: Horizontal/verticale edge.

Now let us assume that the polygons are not exactly axis-parallel but roughly as shown in Fig-

ure 2.8(ii).

By, div(e), for edge Kante e = (v,w) we define the smallest deviation from a vertical or horizontal

edge passing through w or v. This deviation should be small in total for all edges. Additionally, we

would like to take care that the number of reflex and convex vertices of the polygon fits to an axis-parallel

polygon.

Definition 2.11 A polygonal scene is δ-pseudo orthogonal for δ > 0, if for any polygon we have (num-

ber if convex vertices) = (Number of reflex vertices) + 4 and div(P) := maxe∈P div(e) ≤ δ holds.

For δ-pseudo orthogonal we would like to proceed as indicated above and have to fulfil the above

three conditions. Let us additionally assume that the angle counter device on the obstacle has a deviation

(error) of no more than ρ. The following corollary shows some legal value for ρ and δ also with the

interplay of the free space movements.

Corollary 2.12 Let P be a δ-pseudo orthogonal scene and let us assume that we count the angles with

precision ρ such that δ+ρ < π
4
. If we take care that the deviation from the starting direction in Cfree

is no more than π
4
− 2δ− ρ, the simple reflex/convex counter pledge like algorithm helps us to leave a

labyrinth.

Proof. We have to distinguish between reflex and convex vertices at the boundary, otherwise the +1, −1

counting will be erroneous. We consider the worst-case situation for our measurement. Let us assume

that at a vertex we measure the outer angle γ as shown in Figure 2.9. For γ < π we assume that we have

a reflex vertex and for γ > π we assume that the vertex is convex.

2.1 Escape from the labyrinth 51

reflex vertex

e1

e2 δ

δ
ρ

e1

e1

γ

δ

δ

ρ

convex vertex

γ

Figure 2.9: Maximal deviation from the outer angle (γ) and the assumed (dashed) angle for a convex or reflex

vertices.

We would like to guarantee a correct detection for tha maximal error and deviation. The correct angle

of a convex vertex is 3
2
π and the correct angle of a reflex vertex is π

2
. Therefore we require:

3

2
π−2δ−ρ > π und

π

2
+2δ+ρ < π

⇔ 2δ+ρ <
π

2
⇔ 2δ+ρ <

π

2
.

Additionally, we would like to distinguish between horizontal and vertical edges after hitting an edge.

Either we slip along the vertical edge or we start at the horizontal with the simple counter. Again we

assume the worst-case situation; see Figure 2.10.

We measure the turning angle γ for the corresponding edge. For a horizontal edges this is exact

−π
2
; see Figure 2.10(i). If this angle is between −π

4
and − 3π

4
we conclude that we have a horizontal

edge. Otherwise the edge is assumed to be vertical. Note that γ is always negative. We assume that the

deviation from the starting direction is ϕ.

hihi hi

ϕ

e

e

ρ

δ

0

γ

γ

0
ϕ

δ

ρ

− π
2

ϕ = 0

γ =− π
2

(i) (ii) (iii)

e

Figure 2.10: Hitting a horizonal edges (i) in the error-free case, (ii) for small absolut γ, (iii) for large absolut γ.

In Figure 2.10(ii) the deviations ϕ,δ and ρ should make |γ| as small as possible and still smaller than

−π
4
, ϕ is negative. In Figure 2.10(iii) the deviations ϕ,δ and ρ should make |γ| as large as possible and

larger than − 3π
4

, ϕ is positive. We conclude from Figure 2.10(ii)

γ =−π

2
−ϕ+δ+ρ <−π

4
⇔ −π

4
+δ+ρ < ϕ ,

and from Figure 2.10(iii)

γ =−
(π

2
+ϕ+δ+ρ

)

>−3

4
π ⇔ π

4
−δ−ρ > ϕ .

We We detect horizontal edges precisely if ϕ(hi) ∈] − π
4
+δ+ρ, π

4
−δ−ρ [holds. Therefore we

require δ+ρ < π
4
. A maximal deviation of π

4
−δ−ρ would be enough for correct detections. Since we

might start the free space move with an error of δ at a vertex we require π
4
−2δ−ρ for the deviation. 2

52 Chapter 2 Polygonal enviroments

Exercise 15 In the above corollary we can set δ = 0 and ρ = 0 and require that we do not deviate in the

free space by an angle of π/4. Why is this different to the error-free case where an error of less than π/2

was allowed for the free space movements.

2.2 Navigation with touching sensor

We distinguish between the term Navigation for visiting a given target (known coordinates) and the

term Searching for searching for an unknown goal (unknown coordinates). The family of the so-called

Bug-Algorithms are the first algorithms for the navigation task in polygonal environments2 . The first

simple strategies have been introduced by Lumelsky and Stepanov [LS87], extensions and modifications

came from Sankaranarayanan et al. [SM92, SV90a, SV90b, SV91]. Many variants have been discussed

since then. Bug-variants have been practically used for the navigation of some of the Mars rovers like

Sojourner or Bridget, (see also RoverBug, [LB99]).

In the following we assume that the coordinates of the target are known and that the agent have a

finite storage so that coordinates of points and /or length of (sub)path can be stored. The agent also is

aware of the coordinates of its current position, for example by GPS.

Any Bug-algorithm runs with the same principle and actions: The agent moves toward the target

until an obstacle is visited (Move-To-Target action) Then the agent follows the wall of the obstacle for a

while (Follow-Wall action) until some condition triggers the next movement in the free space toward the

target. The leaving condition is the main difference between the Bug-variants.

We assume that the agent R is point-shaped and equipped with a touch sensor for the Follow-Wall

action. We make use of the following notations:

• |pq| denotes the distance between two points p and q,

• D := |st| denotes distance from start s to target t,

• πS denotes the path of a strategy S from s to t; |πS| denotes the length of this path where |πS| := ∞,

if there is no such path,

• U(Pi) denotes the perimeter of the obstacle Pi.

2.2.1 Strategies of Lumelsky and Stepanov

The first algorithm Algorithm 2.2, Bug1, leaves an obstacle Pj at a point p ∈ Pi that is the closest point

to the target. This defines a sequence of Hit-Points hi, where the agent hits an obstacle and Leave-

Points ℓi, where the agent leaves an obstacle. Since the coordinates of the target and the coordinates

of the current position are known, the agent can calculate the corresponding distances. Additionally, by

successively counting small steps, the agent can calculate the path length of the path along the boundary

during the circumnavigation and also the path length to the currently computed optional leave-point.

Additionally, the path length (along the boundary) to the With these values the agent can perform step 3

of Algorithm 2.2 Figure 2.11 shows an example for the path of Bug1.

We assume that there is a finite number of polygonal obstacles and that the obstacles do not touch

or intesect. The number of polygons is finite in the sense that any circle of fixed radius contains only

finitely many obstacles Pi.

Theorem 2.13 (Lumelsky, Stepanov, 1985)

Strategy Bug1 finds a path from a starting point s to a target t, if such a path exists. [LS87]

Proof. For the sequence of hit- und leave-points we have

|st| ≥ |h1t| ≥ |ℓ1t| . . . ≥ |hkt| ≥ |ℓkt|.
2In this case Bug is not meant as a synonym for an error.

2.2 Navigation with touching sensor 53

ℓ1

ℓ3

s

h1

ℓ2

h3
t

h2

Figure 2.11: Example execution of strategy Bug1.

Algorithm 2.2 Bug1

0. ℓ0 := s, i := 1

1. From ℓi−1 move toward the target, until

(a) Target is visited: Stop!

(b) An obstacle is reached at point hi. If hi = ℓi−1: The goal cannot be reached.

2. Surround the obstacle in cw-order — keep track of the point ℓi on the boundary with the shortest

distance to t —, until

(a) Target is visited: Stop!

(b) hi is reached.

3. Move along the shortest path along the boundary to ℓi.

4. Increase i, GOTO 1.

Since for any visited obstacles we choose a leave-point that is closest to the target, any obstacles can be

left. Otherwise, if this is not the case, the obstacle would fully enclose the target. This also means that

we have a strict > in the above sequence. Any obstacle can be visited only once and the finite number of

obstacles within the circle of radius |st| around t lead to a finite sequence which ends at the target. 2

For the performance we conclude:

Theorem 2.14 (Lumelsky, Stepanov, 1985)

Let πBug1 denote the path from s to t, for the successful application of the strategy Bug1. [LS87] We

have:

|πBug1| ≤ D+
3

2
∑

i

U(Pi).

Proof. We subdivide the path into the movements along the boundary of the obstacles Pi and the move-

ments in the free space. Since step 3. of Algorithm 2.2 makes use of a shortest path we have path length
3
2 ∑U(Pi) for any visited obstacle. It remains to calculate the length D′ for the free space movements.

We show that D′ ≤ D holds.

D′ = |sh1|+ |ℓ1h2|+ . . .+ |ℓk−1hk|+ |ℓkt|

54 Chapter 2 Polygonal enviroments

≤ |sh1|+ |ℓ1h2|+ . . .+ |ℓk−1hk|+ |hkt|
= |sh1|+ |ℓ1h2|+ . . .+ |ℓk−1t|
. . .

≤ |sh1|+ |ℓ1h2|+ |h2t|
= |sh1|+ |ℓ1t|
≤ |sh1|+ |h1t|= |st|= D

2
We can compare the above result with the lower bound Theorem 2.23 and conclude that in comparison

to any other Bug-strategy the strategy Bug1 can be consodered to be 3
2
-competitive.

Corollary 2.15 Bug1 is 3
2
-competitive in comparison to arbitrary Bug-like online strategyies.

In the next variant we would like to avoid complete circumnavigations of the obstacles. Therefore

we make use of a line G passing through the segment st. At any time during the Wall-Follow action we

will try to move toward the target if we reach a point at G that is closer to t than the previous hit-point;

see Algorithm 2.3. Note that by this action, it is possible to visit an obstacles more than once which was

impossible for Bug1. h j and ℓ j do no longer denote hit- and leave-points of the j-th obstacle.

ℓ3

h1

ℓ1

h2

h3

ℓ2

s

t

Figure 2.12: Example of the execution of the strategy Bug2.

Figure 2.13 shows an example, where an obtacle is visited more than once. After hit-point h3 the

agent does not leave the obstacle at p1 or ℓ1 since |h3t| is smaller thanthe distance of p1 and ℓ1 to t. At

p2 and p3 the agent cannot leave the obstacle since the segments p2/3t are blocked by the obstacle.

t

h1

ℓ1

h2

ℓ2
ℓ3

p1 p2 p3
h3

s

Figure 2.13: The execution of Bug2 can lead to several visits of the same obstacle.

The number of polygons is finite in the sense that any circle of fixed radius contains only finitely many

obstacles Pi.

Lemma 2.16 The strategy Bug2 meets finitely many obstacles.

Proof. In step 2b of Algorithm 2.3 the agent leaves an obstacle only if |ℓ jt|< |h jt| holds. Since the circle

of radius |st| around t contains only finitely many obstacles we can hit only finitely many obstacles. 2

2.2 Navigation with touching sensor 55

Algorithm 2.3 Bug2

0. ℓ0 := s, j := 1

1. From ℓ j−1 move toward the target, until

(a) Target is reached: Stop!

(b) An obstacle is visited at h j.

2. Surround the obstacle in cw-order, until

(a) Target is reached: Stop!

(b) The line passing segment st is visited at point q, |qt| < |h jt| and qt is free, such that we can

leave the obstacle from q toward the target.

Set ℓ j := q, j := j+1 and GOTO 1.

(c) h j is visited again without reaching a point q as in described in b). The target cannot be

reached. erreicht werden.

The number of surroundings depend on the intersections of the line passing through st with the

boundary of the relevant obstacles.

Lemma 2.17 Let ni denote the number of intersections of the line
←−−→
st passing through st with the bound-

ary of polygon Pi. The strategy Bug2 visits any point of Pi only ni

2
times.

Proof.

Bug2 successively defines pairs (h j, ℓ j) of hit- und leave-points and by the leave condition we have

|h jt|> |ℓ jt|> |h j+1t|.

This means that any point is only once a leave-point or a hit-point and any intersection point can

appear only in one pair (h j, ℓ j). On the other hand a single pair can only lead to one full surrounding, if

the same hit-point is visited, the strategy stops. We have at most ni

2
pairs and surroundings. 2

Finally we conclude that we have only finitely many relevant intersections and either the strategy visits

a current hit-point again and the corresponding obstacle enlcoses the target or we will finally succeed.

Corollary 2.18 Strategy Bug2 is successful, if the target can be reached.

The performance of Bug2 is given in the following statement.

Theorem 2.19 (Lumelsky, Stepanov, 1985)

Let πBug2 denote the path from s to t, for the successful application of strategy Bug2. We have

|πBug2| ≤ D+∑
i

ni U(Pi)

2
.

Here Pi is an obstacle that is visited during the execution of Bug2. [LS87]

Proof. The term ∑
ni U(Pi)

2
follows from Lemma 2.17. For the length of the free space movements, say D′,

between the obstacles, we make use of the same arguments as in the proof of Theorem 2.14 and conclude

D′ ≤ D. 2

Bug2 is not always better than Bug1. Obviuously, in the presence of convex obstacles, Bug2 outperforms

Bug1.

56 Chapter 2 Polygonal enviroments

Corollary 2.20 For a polygonal scene with convex obstacles the successful application of strategy Bug2

has path length

|πBug2| ≤D+∑
i

U(Pi).

Exercise 16 Compare the variants Bug1 and Bug2. Present an example where Bug1 outperforms Bug2.

Show that for both strategies the performance guarantee is tight.

2.2.2 Strategies from Sankaranarayanan and Vidyasagar

Many variants of the Bug-strategies have been discussed. Many of them make use of more sensor power

for local improvement. For example a VisBug2 strategy makes use of a visibility range and can find

local short-cuts for the Bug2 path. We would like to mention some structural different variants from

Sankaranarayanan and Vidyasagar. The reason is that we would like to show that some local optimization

can have unexpected disadvatages.

t

h3

ℓ3
h2

ℓ2

ℓ1

h1

s

Figure 2.14: Example of the execution of Change1.

Bug1 fully surrounds any obstacle, Bug2 tries to avoid this by moving toward the goal a bit earlier.

In this case a single obstacle can be visited many times. Algorithm 2.4 tries to avoid this behaviour: If

a surrounding is started, and an old hit- or leave-point (not the current hit-point!) is visited, the strategy

starts moving along the boundary in ccw-order; see Figure 2.14.

Theorem 2.21 (Sankaranarayanan, Vidyasagar, 1990)

For the length of the path of the successful application of strategy Chang1 we have [SV90a]

|πChange1| ≤D+2 ·∑
i

U(Pi).

Proof. Exercise 2

Strategy Change2 (Algorithm 2.5) differs from Change1 only in the leaving condition. The leave-

point is not restricted to a point on the line ←−−→st . As soon as there is a point q on the boundary in the

Follow-Wall action that is closer to the target than the distance |ht| for the last hit-point,we will leave the

obstacle toward the target, if this is possible. Note that such a behaviour can also be used for a variant of

Bug2.

Theorem 2.22 (Sankaranarayanan, Vidyasagar, 1990)

For the length of the path of the successful application of strategy Chang1 we have [SV90b]

|πChange2| ≤D+2 ·∑
i

U(Pi).

Proof. Exercise 2

Exercise 17 Present proofs for the above two Theorems. Show that the bounds are tight.

2.2 Navigation with touching sensor 57

Algorithm 2.4 Change1

0. ℓ0 := s, i := 1

1. Move from ℓi−1 along the line passing s and t toward the target, until

(a) Target is reached: Stop!

(b) An obstacle is reached at hi.

2. Surround the obstacle, until

(a) Target is reached: Stop!

(b) The line passing s and t is visited a some point q such that the distance from q to t is smaller

than hit and the segment qt is free (see refalgobug2).

Set ℓi := q, i := i+1 und GOTO 1.

(c) A hit- or leave-point h j orℓ j with j < i is visited: Move back to hi in ccw-order and start

ccw-order surrounding under condition (a), (b) oder (d) (not (c) again!)

(d) hi is visited again without reaching a point as indicated in (b) or (c). The goal is enclosed by

an obstacle.

Algorithm 2.5 Change2

As Change1, but:

0. ℓ0 := s, i := 1

1. Move from ℓi−1 along the line passing s and t toward the target, until

2.(b) A point q is visited such that the distance from q to t is smaller than hit and the segment qt is free

(see refalgobug2).

Set ℓi := q, i := i+1 und GOTO 1.

58 Chapter 2 Polygonal enviroments

s

th1

ℓ1

ℓ2
ℓ3

ℓ4

h3

h2

h4

Figure 2.15: Example execution of strategy Change2.

2.2.3 Lower Bound

Finally, we would like to prove a lower bound for any kind of Bug-strategy that makes of the same

category of actions. We would like to show that we can force any strategy to surround at least the

relevant obstacles once. Note, that a lower bound is always a precise environment description.

Theorem 2.23 (Lumelsky, Stepanov, 1985)

For any strategy S (due to the action-model), and for any K > 0, there exist a strategy with arbitrary

D > 0, sucht that for any δ > 0: |πS| ≥ K ≥ D+∑U(Pi)−δ. Pi are at least all obstacles that lie within

the circle of radius D around the target. [LS87]

L

ℓ2

t

(i) (ii)

πS

(iii) (iv)

δ

t

s

t

s

πS

πS

s

t

C =
√

D2 +W2

2W

D

s

ℓ1

δ

Figure 2.16: (i) “virtual” horse-shoe, (ii) “real” obstacles, (iii) shortest possible starting path, (iv) almost efficient

path.

Proof. We consider a virtual horse-shoe as depicted in Figure 2.16(i) with width 2W , thickness ε << δ

and length L. The distance from s to t is D. The agent starts inside the horse-shoe. The idea is that the

horse-shoe becomes (partly) real only in the Follow-Wall modus after touching the inner walls. For any

hit we let a portion of length δ become real; see Figure 2.16(iii).

For the strategy in Figure 2.16(iv) we can let half of the horse-shoe become real. Therefore we let

L and W be large enough such that D+W −
√

D2 +W 2 ≤ δ/2 and L+W −
√

L2 +W 2 ≤ δ/2 holds and

this gives a path length of

|πS| ≥
√

L2 +W 2 +L+
√

D2 +W 2 ≥ D+W +L+W −δ (2.1)

2.2 Navigation with touching sensor 59

= D+2(L+W)−δ . (2.2)

We can take the thickness ε into account by the use of some δ′ instead of δ and obtain the desired

result. So this analysis covers Figure 2.16(iv) and obviously also Figure 2.16(iii). We conclude |πS| ≥
K ≥ D+∑U(Pi)−δ′.

The remaining problem is that the strategy might decide to visit the left and right inner arm of the

horse-shoe as given in Figure 2.16(ii). In this figure we have a problem with the obstacles parts on the

right-hand side that overlap with obstacles parts from the left-hand side. For example in Figure 2.16(ii)

l2 at the right arm overlaps with some obstacle part at the left arm.

Let us neglect thickness ε for a while. Outside the horse-shoe the path length can be measured

by |πO| ≥ L+C with C =
√

D2 +W 2. For the non-overlapping boundary parts, say Pi, we have L ≥
∑ 1

2 U(Pi). Let πI denote the path inside the horse-shoe. Let πI1
be the part of πI that simply passes the

non-overlapping parts Pi. We have |πI1
| ≥∑ 1

2 U(Pi) for all those obstacles parts. Let πI2
be the remaining

part of πI . This path consists of the movements from left to right and the remaining overlapping parts, say

Pj (for example l2 in Figure 2.16(ii) belongs to some Pj). We conculde that together with the movements

from left to right we have |πI2
| ≥ ∑U(Pj) for all such overlapping boundary parts Pj. In principle one

half of the obstacle boundary is covered by passing Pj and the other half is covered by a movement to

the other side.

Altogether, and a bit more precisesly (taking thickness into account) we conclude |πS| ≥
√

D2 +W 2+

∑U(Pk)− 2nε for all n obstacles Pk. We have n ≤ 2L
δ and with ε ≤ δ2/(8L) we conclude 2nε ≤ δ/2.

Altogether, |πS| ≥D+W +∑U(Pi)−δ holds in this case. 2

60 Chapter 2 Polygonal enviroments

Chapter 3

Online searching for objects

In this chapter we collect several results that consider the task of searching for an unknown object.

Different from the navigation task, the position of the object is not known. The object is detected due to

the sensor abilities of the agent.

For example one might consider the case that the agent is equipped with a sight system. For example

inside simple polygons we can assume that the agent is point-shaped and the visibility information is

given by the visibility polygon.

Definition 3.1 Let P be a simple polygon and r a point with r ∈ P. The visibility polygon of r w.r.t P,

VisP(r), is the set of all points q ∈ P, that are visible from r inside P, i.e., the line segment rq is fully

inside P.

We start our consideration by searching for a goal inside a corridor polygon. The polygon can also

be modelled by a line. Note that the visibility information is not helpful, if the corridor has many small

kinks or caves, where the goal might be hidden.

x6 x5

x3
x1x2

x4

d

Figure 3.1: Searching for a door along a line.

s

Figure 3.2: In which corridor lies the target point?

62 Chapter 3 Online searching for objects

3.1 2-ray search and the Theorem of Gal

As a special case we consider the problem of searching for a point along a line (or on 2 rays emanating

from a starting point). This problem is also known as the lost-cow or cow-path problem; see citekrt-

sueor-93. The cow is searching for the hole in the fence or an agent is searching for a door along a wall.

Form the starting position neither the direction nor the distance d to the goal (door/hole) is given. We

assume that the agent has no sight system or as mentioned above at any point on the line the sight is very

limited (for example by many kinks). Thus the agent detects the goal only by visiting the goal exactly.

The agent cannot concentrate on one direction, because the goal might be on the opposite side.

Any reasonable strategy successively changes the direction and can be described by an infinite sequence

(x1,x2,x3, . . .) with xi > 0. The agent runs x1 steps to the right, returns to the start, runs x2 steps to the

left, returns to the start, runs x3 > x1 steps to the right again and so on; see Figure 3.1. For the searching

depth x j we can assume that they are monotonically increasing on each side, i.e., xi+2 > xi.

We compare the length of the agents path to the shortest path to a goal. It is sufficient to consider the

local worst-case situation. In the beginning the agent returns to the start by path of length 2x1. If the goal

is located arbitrarily close on the opposite side, there is no competitive strategy since for any C > 0 there

will be an ε > 0 such that 2x1 + ε > C · ε holds. Therefore we require an additive constant in this case.

Alternatively, we assume that the goal is at least step 1 away from the start. These two interpretation are

equivalent.

Exercise 18 Show that for the 2-ray search problem, the following interpretations are equivalent: A

strategy is C competitive with some additive constant A. A strategy is C competitive without additive

constant but the goal is at least step B away from the start.

We assume that the goal is at least one step away from the start. The local worst-case for the com-

petitive ratio is that the agent slightly miss the target at distance d by an ε, performs another turn on the

opposite side and visits the target at distance d + ε; see Figure 3.1. Now the task is to find a sequence

(x1,x2,x3, . . .) such that
k+1

∑
i=1

2xi + xk ≤C · xk

holds for all k and C is as small as possible. This means that

∑k+1
i=1 2xi + xk

xk

= 1+2
∑k+1

i=1 xi

xk

has to be minimized for all k.

A reasonable stratagy doubles the distance all the time, that is xi = 2i; see Figure 3.1. Such a doubling

heuristic is indeed optimal as shown in [BYCR93] and also in [Kle97]. The competitive ratio is bounded

by C = 9.

Form ∑k+1
i=1 xi = xk+2−1

x−1
−1 we conclude

∑k+1
i=1 2i

2k = 2k+2−2
2k = 4− 2

2k < 4 and attain 9 as the overall ratio

which is attained asymptotically.

In the context of Search Games Gal [Gal80] has shown that under certain condition such functionals

Fk(f1, f2, . . . , fk+1) := ∑k+1
i=1 fi

fk
can be minimized for all k by an exponential sequence fi = ai for some

a > 1. Here X = (f1, f2, . . .) is a sequence of positive values fi and the functional Fk depends on k+ 1

successive entries of X . We can also write Fk(f1, f2, . . .) statt Fk(f1, f2, . . . , fk+1) it the number of entries

used is clear from the context. We are searching for an optimal sequence X . More precisely: The

supremum of Fk(X) over alle k gives the perfomance of X (it need not be a maximum) and we are

searching for a sequence X that gives the infimum on all such suprema (it need not be a minimum). Thus

we are searching for X such that

inf
Y

sup
k

Fk(Y) =C und sup
k

Fk(X) =C .

3.1 2-ray search and the Theorem of Gal 63

The following general result helps to optimize functionals in the sense explained above. Ee do not

give a formal proof for it.

Theorem 3.2 (Gal, Alpern, 2003)

Given a sequence of functionals Fk(X) for all k ≥ k0 and a sequence X = (x1,x2,x3, . . .) with xi > 0. For

X let k+ i be the largest Index, so that Fk(X) depends on xk+i.

For two sequences X = (x1,x2,x3, . . .) and Y = (y1,y2,y3, . . .) let X +Y := (x1 + y1,x2 + y2,x3 +
y3, . . .) and α ·X := (α · x1,α · x2,α · x3, . . .).

If Fk fulfils the conditions:

(i) Fk ist stetig,

(ii) Fk ist unimodal: Fk(α ·X) = Fk(X) und Fk(X +Y)≤max{Fk(X),Fk(Y)},
(iii)

lim inf
a7→∞

Fk

(
1

ak+i
,

1

ak+i−1
, . . . ,

1

a
,1

)

= lim inf
εk+i,εk+i−1,...,ε1 7→0

Fk (εk+i,εk+i−1, . . . ,ε1,1) ,

(iv)

lim inf
a7→0

Fk

(

1,a,a2, . . . ,ak+i
)

= lim inf
εk+i,εk+i−1,...,ε1 7→0

Fk (1,ε1,ε2, . . . ,εk+i) ,

(v) Fk+1(f1, . . . , fk+i+1)≥ Fk(f2, . . . , fk+i+1).

Then

sup
k

Fk(X)≥ inf
a

sup
k

Fk(Aa)

where Aa = a0,a1,a2, . . . und a > 0. [AG03]

The Theorem says that due to the correctness of some natural conditions the functionals Fk can be

minimized for all k by an exponential sequence. We can apply the Theorem on the 2-ray search problem

and have to show that the requirements hold for Fk(f1, f2, . . .) := ∑k+1
i=1 fi

fk
. Obviously, Fk is continuous.

Also unimodality holds. We have
∑k+1

i=1 α· fi

α· fk
= ∑k+1

i=1 fi

fk
. Additionally, from the general statement a

b
≥ c

d
⇔ a+c

d+b
≤ a

b
(shown by simple

equivalence) we conclude that for two sequences X = (x1,x2,x3, . . .) and Y = (y1,y2,y3, . . .) we have

Fk(X +Y)≤max{Fk(X),Fk(Y)}. The corresponding limits for the special sequences (εk,εk−1, . . . ,ε1,1)
and (1,ε1,ε2, . . . ,εk), respectively run to infinity and the statemens (iii) and (iv) trivially hold. Also

statement (v) holds because on the left hand side there is an additional number in the numerator. Alto-

gether,
∑

k+1
i=1 fi

fk
is minimized by fi = ai. Therefore, the remaining task is to find the best value for a. From

∑k+1
i=1 ai = ak+2−1

a−1
− 1 and the fact that ak has to increase arbitrarily we conclude that f (a) := a2

a−1
has to

be minimized. By analytic means we obtain a = 2 as the optimal value for minimization.

3.1.1 Generalization to m-rays

We can easily extend the problem by considering m corridors emanating from a common starting point

which gives the so-called m-ray-search problem; see Figure 3.2. If we consider the situation as searching

for a target point inside a polygon, we can already state that this problem is not competitive in general.

Assume that the caves at the end of the m corridors have distance 1 from the start. The agent has

to look inside any cave and the adversary places the target in the last cave. This gives a path length

of 2(m− 1)+ 1 versus the shortest path of length 1. So for any C there exists a polygon such that no

strategy can guarantee a competitive ratio smaller than C. We just choose the m-corridor polygon for

C < 2(m−1)+1. This means that the optimal competitive ratio for m rays should depend on m.

So we consider a fixed m and m rays that emanate from a common starting point s. The agent has no

sight system and detects the goal only by an exact visit. We make use of the following notations. By f j

we denote the j-th step where the agent visits some ray at depth f j. Let J j denote the index of the next

64 Chapter 3 Online searching for objects

visit of this ray. We require this index for describing the local worst case situation. So let (f j,J j) be the

corresponding pairs for all j. Now the performance of a strategy (f1, f2, . . .) obviuously is given by

sup
l

(

1+2
∑

Jl−1
i=1 fi

fl

)

.

In order to apply the Theorem of Gal we assume that the rays are visited in a periodic order (J j =
j+m) and with overall increasing depth (f j ≤ f j+1). Figure 3.3 shows an example with some steps for

m = 4. Now we have to minimize Fk(f1, f2, . . .) :=
fk+2∑k+m−1

i=1 fi

fk
over all k.

By the same arguments as before Fk fulfills the requirements of Theorem 3.2 and we conclude

supk Fk(X) ≥ infa supk Fk(Aa) for Aa = a0,a1,a2, . . . and a > 0. In analogy to the 2-ray case we attain

a function f (a) independent from k and f (a) has to be minimized. This optimization is a given as an

exercise.

Exercise 19 Minimize the functionals Fk(f1, f2, . . .) :=
fk+2∑

k+m−1
i=1 fi

fk
and show that the (optimal) compet-

itive ratio of the m-ray search problem for periodic and monotone strategies is C = 1+ 2m
(

m
m−1

)m−1
.

An optimal exponential strategy ai for this case is given by a = m
m−1

.

f8

s

f1

f2

f3

f5

f9

f4

f6

f7

Figure 3.3: The first steps of a periodic and monotone strategy for m = 4 rays.

The above optimization was a simple application of Theorem 3.2. The main problem is that we

assumed that there is an optimal strategy that is periodic and monotone. This is an instance of a more

general problem. There are some motion planning problems where the existence of periodic and mono-

tone optimal solutions is not known. The best upper bounds for competitive ratios are often achieved

by the above assumption. Lower bounds are much harder to achieve. For the m-ray configuration the

existence of periodic and monotone optimal solutions can be shown.

Lemma 3.3 There is always an optimal competitive (with the best overall achievable ratio C) m-ray

search strategy (f1, f2, . . .), that visits the rays in overall increasing depth and in periodic order.

Proof. Assume that there is an arbitrary C-competitive strategy (f1, f2, . . .) with pairs (f j,J j) for the

smallest attainable ratio C. First, we show that we can rearrange this strategy to a monotone C-competitive

strategy (f ′1, f ′2, . . .), i.e., f ′j ≤ f ′j+1 holds for all j.

Let j be the smallest index j such that f j > f j+1. The performance (C− 1)/2 for the strategy

(f1, f2, . . .) is represented in

J j−1

∑
i=1

fi ≤
C−1

2
f j : for index j (3.1)

J j+1−1

∑
i=1

fi ≤
C−1

2
f j+1 : for index j+1 (3.2)

Jl−1

∑
i=1

fi ≤
C−1

2
fl : for index l 6= j, j+1 (3.3)

3.1 2-ray search and the Theorem of Gal 65

We exchange f j and f j+1 by f ′j := f j+1 and f ′j+1 := f j. What happens to the performance above?

Inequality (3.2) remains true, because we only increase the right hand side. If J j+1 > J j holds, also the

first inequality (3.2) is maintained, because the original second inequality (for f j+1 on the right hand

side) hold and the left hand side of inequality (3.1) is even smaller now. The remaining inequlities (3.3)

are not concerned from this exchange.

The remaining task is to handle the case J j+1 < J j. Here we have the problem of maintaining in-

equality (3.1). To overcome this problem we exchange the role of the rays of f j und f j+1 directly after

the index j+1 completely. After index j+1 any original visit of the ray of f j+1 is no applied to the ray

of f j and vice versa. Of course the exchange f ′j = f j+1 and f ′j+1 = f j is maintained. Now we do not have

a problem with inequality (3.1) any more since the ray is visited early enough now. Inequality (3.2) is

also maintained because we have the same next visits as before. Inequalities (3.3) do not change, they

are not influenced by the exchange. In principle for J j+1 < J j and f j > f j+1 we exchange two complete

rays beginning with index j.

For example if f1 > f2 holds and J1 = 7 for ray K and J2 = 5 for ray L, then after the exchange we

visit K by f ′1 := f2 then L by f ′2 := f1, later K by f ′5 := f5 and L by f ′7 := f7 and so on. Figure 3.4 shows

an example.

f ′1 := f2

f ′5 := f5

f ′9 := f9

f ′7 := f7

f ′2 := f1

f2

s

f7

f1

K

f5 f3

f8

f6f4

L f9

Figure 3.4: A non-periodic and non-monotone strategy. First, we exchange the values f1 and f2 only. But since

J1 = 7 > J2 = 5 holds we fully exchange the role for the corresponding rays K and L.

Altogether, we obtain a C-competitive strategy (f ′1, f ′2, . . .) with f ′j ≤ f ′j+1 for all j by applying the

above exchange successively.

Finally, we construct a periodic strategy by the same idea. Consider a monotone strategy with a first

index j such that J j+1 < J j. We exchange the role of the corresponding rays after step j + 1, which

means that f j and f j+1 remain on their place. Now J′j+1 > J′j holds. The ray with smaller f j is visited

earlier which maintains the ratio, the ray with next at visit J j s visited later now but the original strategy

maintains the ratio for the corresponding sum with f j and we have f j+1 on the right hand side now. All

other inequalities are not concerned.

Now after this change it might happen that some the monotonicity after step j+1 is no longer given.

Then we apply the first rearrangement again and so on.

Altogether we obtain a monotone strategy with J j+1 > J j for all j and the same ratio C. Trivially, if

J j+1 > J j holds for all j, this can only mean that J j = j+m holds for all j. 2

3.1.2 Alternative approach: Equality

By Theorem 3.2 we obtained a very general approach for solving motion planning problems optimally.

Somehow we can call this the Optimality of exponential functions. Here we would like to present an

alternative. The corresponding paradigm can be denoted as Optimality by equality. Consider the 2-

ray search problem. The optimal strategy xi = 2i−1 attains the competitive ratio asymptotically, but

never reaches the ratio exactly. Even after the first round we attain 2x1 + 1 ≤ C · 1 and for x1 = 1 and

66 Chapter 3 Online searching for objects

C = 9 there is some room for the first step. Interestingly the strategy xi = (i+1)2i fulfils the inequality

∑k+1
i=1 xi ≤ C−1

2
xk by equality for all k. This can be easily shown by induction.

Exercise 20 Show that the strategy xi = (i+1)2i attains a competitive ratio of C = 9 and fulfils ∑k+1
i=1 xi =

C−1
2

xk for all k.

We will now show that this is not given by chance. Assume that there is an optimal C-competitive

strategy for the 2-ray search problem. This means that there is a sequence (x1,x2, . . .) such that
∑k+1

i=1 xi

xk
≤

(C−1)
2

holds for all k. In this case there is also always a strategy (x′1,x
′
2,x
′
3 . . .) with

∑k+1
i=1 x′i
x′k

= (C−1)
2

for all k.

The proof for this statement works as follows: The functional
∑k+1

i=1 xi

xk
is strictly monotonically decreasing

for xk. If we increase xk the functional decreases. On the other hand the
∑k+1

i=1 xi

xk
is strictly increasing for

all x j with j 6= k. This means that increasing x j for j 6= k will increase the functional.

We can assume that xi ≥ 0 holds. Now assume that there is a first index k such that inequality holds,

i.e.:
∑k+1

i=1 xi

xk
< (C−1)

2
. If this holds already for the first index k = 0 with x0 := 1 we simply decrease x0 such

that x1 +1 = (C−1)
2

x0 holds. Now consider k > 0 as the smallest index with
∑

k+1
i=1 xi

xk
< (C−1)

2
. We decrease

xk in such a ways that
∑k+1

i=1 xi

xk
= (C−1)

2
is given, which is possible in this case. All other inequalities remain

valid. Obviously, we will attain
∑k

i=1 xi

xk−1
< (C−1)

2
for the index k− 1 and we will proceed for k− 1 by the

same argument until finally we reach k = 0 again. Note that by x1 + 1 = (C−1)
2

x0, x0 cannot decrease to

0. Thus for any such first index k we attain a monotonically decreasing sequence (x0,x1, . . . ,xk) that is

bounded. This means that the above procedure will always converge to a sequence (x0,x1, . . . ,xk) such

that
∑

j+1
i=1 xi

x j
= (C−1)

2
for j = 0 to k. This holds for any k. This means that for infinitely many steps there

always exists a strategy that achieves equality in any step. Finally, we make use of a scalar A such that

A · x0 = 1 holds and (1,A · x1, . . . ,A · xk) is the desired sub-strategy.

The above arguments show that such a strategy exists for any k but the procedure is not construc-

tive. Let us now assume that
∑k+1

i=1 xi

xk
= (C−1)

2
holds for all k, we conclude xk+1 = ∑k+1

i=1 xi−∑k
i=1 xi =

(C−1)
2

(xk− xk−1) and we are searching for the solution of the recurrence
(C−1)

2
(xk− xk−1) = xk+1. We

set x1 =
(C−1)

2
= (C−1)

2
(x0− x−1) with starting values x0 = 1 and x−1 = 0. The task is to find the smallest

value for C such that the above recurrence attains a reasonable solution for the 2-ray search problem.

This means that we will have a look at the methods for finding the solutions of recurrences. Here we

concentrate on the methods proposed by [GKP98] for finding the a closed expression for any xk. This

method shows that C ≥ 9 is required, which gives a second proof for the optimal ratio 9.

For solving a recurrence as shown in [GKP98] we can perform 4 steps. The general correctness of

the method is proved in [GKP98].

A) Closed Form: We bring
(C−1)

2
(xk− xk−1) = xk+1 with x−1 := 0 and x0 = 1 into a closed formula

that also holds for the starting values. For comparison to [GKP98] we use the notation g instead of x and

set D := (C−1)
2

. We have g0 = 0, g1 = 1 und gn = D(gn−1−gn−2). By [n = l] we denote a serie that has

value 1 for n = l and value 0 for all other n. We assume gn = 0 for negative n. Thus a closed formula is

given by gn = Dgn−1−Dgn−2 +1 · [n = 1].

B) Building a power serie with coefficients gn: We consider the power serie G(z) :=∑n gnzn. Inserting

the closed form of the preceding paragraph we have:

∑
n

gnzn = D∑
n

gn−1zn−D∑
n

gn−2zn +∑
n

[n = 1]zn

= D∑
n

gnzn+1−D∑
n

gnzn+2 + z

= DzG(z)−Dz2G(z)+ z .

3.1 2-ray search and the Theorem of Gal 67

C) Closed form for power serie G(z): From (B) we conclude G(z) = z
1−Dz+Dz2 .

D) Developing the power serie G(z): The remaining task is is to make use of (C) for the precise

development of the power serie. We will sketch the procedure presented in [GKP98]. In general we have

G(z) = P(z)
Q(z) . In our special case we conclude P(z) = z and Q(z) = 1−Dz+Dz2. By function theory

arguments a serie for G(z) with the precise values for gn is constructed; details are given in [GKP98].

The construction is based on the zeros of Q(z). The main argument is that the zeros of G(z) has to be

real in order to obtain reasonable expressions for gn. The overall conclusion that the zeros of Q(z) are

given by z1,2 =
1
2
±
√

1
4
− 1

D
. The radicant is negative for D < 4 and there are no real-valued solutions in

this case. The conclusion is that only D≥ 4 (or C ≥ 9, respectively) guarantees reasonable values for gn.

The details of calculating gn precisley from the zeros of G(z) are given in [GKP98]. We would

like to present at least the calculations for the recurrence above for D = 4. First, Q(z) is expressed

by Q(z) = q0(1− p1z)d1 · · · (1− plz)
dl where 1

pi
is a zero of Q of order di. In our example we have

Q(z) = (1−2z)2 with q0 = 1, p1 = 2 and d1 = 2.

Now the coefficients gn of G(z) are given by f1(n)pn
1 + · · · fl(n)pn

l where fi(n) is a polynomial of

degree di−1. In our example f1(n) has degree d1−1 = 1 and the coefficient gn of G(z) is f1(n)2
n.

Additionally, for the polynomial fi(n) of degree di−1, the leading coefficient ai is presented by

ai =
P
(

1
pi

)

(di−1)!q0 ∏ j 6=i

(

1− p j

pi

) .

In our special case we have f1(n) = a1n+ a0 with a1 :=
P(1

2)
(2−1)!1 = 1

2
. Now we have gn =

(
1
2
n+a0

)
2n.

The remaining task is to determine a0. This can be done by the starting values g1 = 1 or g0 = 0. For

1= g1 =
(

1
2
+ c
)

2= 1+2a0 we have a0 = 0, the same holds for g0 = 0. Therfore we conclude gn = n2n−1

which is exactly the above presented solution, which attained equality in any step. The competitive ratio

is 9.

Altogether, in this section we have developed different methods for solving discrete motion planning

problems by functionals.

3.1.3 2-ray search with bounded distance

Let us assume that in the beginning the maximal distance D from start to target point is given. This

means that the rays are bounded by length D. We consider the 2-ray search problem; see Figure 3.5.

x2
x4 x5x6

x1
x3

d DD

Figure 3.5: Falls wir wissen, dass das Ziel in einer Distanz D liegt, können wir die Strategie optimieren.

If the goal has precisely distance D from the start, the agents runs distance D to one side, back to the

start and distance D to the opposite side. In the worst-case this gives a ratio of 3 which is optimal. Now

let us assume that the goal is inside an interval [1,D] away from the start, we would like to minimize the

ratio C = 9.

Obviously, the optimal strategy checks precisely distance xk = D in the second last step on one side

and attains the ratio for the last depth xk−1 < D on the opposite side. The step xk+1 can be arbitrarily

long, it will not decrease the ratio any more; see Figure 3.5. Because of these properties we can also ask

68 Chapter 3 Online searching for objects

for the opposite question. Assume that a ratio C < 9 is given. What is the maximal depth D on both side,

so that any goal in the distance interval [1,D] away from the start will be found with ratio C.

More precisely, we would like to maintain the ratio C < 9 and maximize the second last step xk.

Since C = 9 is the overall optimal factor, for C < 9 we cannot guarantee factor C for distances up t ∞ or

−∞.

In [HIKL99] it was shown, that for C < 9 the maximal reach will be attained for a strategy that

attains equality in any worst-case step. We can conclude
∑

j+1
i=1 xi

x j
= (C−1)

2
for j = 0,1, . . . ,k− 1 holds,

where x0 = 1 and xk is the maximal depth.

The choice of x0 = 1 stem from the fact, that the goal is at least one step away from the start. If

there is a sub-strategy (x1,x2, . . . ,xk) such that x1 < (C−1)
2

holds. We can simply use a scalar A > 1

such that Ax1 =
(C−1)

2
. The strategy (Ax1,Ax2, . . . ,Axk) is C-competitive and has larger depth Axk. The

argumentation that any inequality has to be fulfilled by equality is given in the proof below.

Let us have a look at the results: For C = 6 we conclude: x1 = 2.5, x2 = 2.5(2.5− 1) = 3.75,

x3 = 2.5(3.75−2.5) = 3.125 < x2, x4 = 2.5(x3− x2)< 0. This means that k is 2 and the strategy attains

optimal reach 3.75, the worst-case is attained for x0 = 1 and x1 = 2.5. For C = 7 we obtain the strategy:

x1 = 3, x2 = 3(3− 1) = 6, x3 = 3(6− 3) = 9, x4 = 3(9− 6) = 9, x5 = 3(9− 9) < x3. We have reach 9

and k equals 4. The worst-case for the ratio is attained at x0 = 1, x1 = 3, x2 = 6 and x3 = 9.

Theorem 3.4 Let C < 9 be the given factor for the 2-ray search problem. For the maximal reach

problem there is always an optimal strategy that attains equality in any step. [HIKL99]

Proof. We would like to develop an alternative proof. Let us assume that there is a strategy that attains

the maximal reach for given C < 9. The goal is at least one step away from the start. We have a sequence

(x1,x2, . . . ,xk) such that
∑

j+1
i=1 xi

x j
≤ (C−1)

2
for j = 0,1, . . . ,k− 1 holds with x0 := 1 and xk is the maximal

depth.

Consider the first index j such that
∑

j+1
i=1 xi

x j
< (C−1)

2
holds. For j = 0 we have x1 <

(C−1)
2

holds. We can

simply use a scalar A1 > 1 such that A1x1 =
(C−1)

2
. The strategy (A1x1,A1x2, . . . ,A1xk) is C-competitive

and has larger depth Axk. In general let us assume that for j > 0 we have ∑
j+1
i=1 xi <

(C−1)
2

x j. We enlarge

x j+1 by factor A j+1 such that ∑
j
i=1 xi +A j+1x j+1 =

(C−1)
2

x j holds. We exchange the current sequence by

(x1,x2, . . . ,x j,A j+1x j+1,A j+1x j+2, . . .) and still guarantee
∑

j+1
i=1 x′i
x′j
≤ (C−1)

2
for j = 0,1, . . . ,k−1. We have

reach x′k = A j+1xk > xk which gives the contradiction. 2

Figure 3.6 shows the curve of the function f , where f (C) is the maximal reach that can be attained

for C. For any kink in the curve the strategy makes another turn. The number of turns increases. For

C = 7 we have k = 3 turns and for C = 6 we have k = 2 turns!

The above function f is strictly monotonically increasing in C. This means that by binary search we

can easily compute the best ratio C for given reach R. The corresponding reverse function is shown in

Figure 3.7.

The above equality-paradigm can also be used for the m-ray search problem, if the given depth is

the same on each ray; see [Sch01, Lan00]. For different intervals on the rays up to now no efficient

optimization technique is known. Only for some few rays (< 4) a master thesis shows some results; see

[Web07].

3.2 Searching for a ray in the plane

In this section, we consider the search for the origin, t, of a ray R in the plane, see Figure 3.8. The

searcher has no vision, but recognizes the ray and the ray’s origin as soon as the searcher hits the ray.

The position of the ray is not known in advance. The searcher moves along a path, Π, starting at a given

point, s. Eventually, Π will hit the ray R at a point p and the origin t is detected. The cost of the strategy is

given by the length of the path from s to p (i.e., |Πp
s |), plus the distance |pt| from p to t. We measure the

3.2 Searching for a ray in the plane 69

C

5

15

20

10

r

3 4 5 6 7 8 9

Figure 3.6: Maximal reach depending on the ratio C < 9.

quality of the path Π for the ray R using the competitive ratio
|Πp

s |+|pt|
|st| ; that is, we compare the length of

the searcher’s path to the shortest path from s to t. We would like to find a search path Π that guarantees

a competitive ratio not greater than C for all possible rays R in the plane. In turn, C should be as small

as possible. Similar problems were discussed by Alpern and Gal [AG03]; for example, searching for an

unknown line in the plane.

3.2.1 The Window Shopper Problem

First, we consider the problem of finding a gift along a shopping window. The agent starts somewhere

and looks toward the window. We assume that the item, t, gets into sight if the ray, R, from t to the

seachers position, p, is perpendicular to the window. Then the searcher moves toward t.

This problem can be modelled as follows. W.l.o.g. we assume that the line of sight (i.e., the ray, R,

we are looking for), is parallel to the X -axis, starts in (1,yR) for yR ≥ 0, and emanates toward the left

side of the perpendicular ray R′ (the window) which starts in (1,0). The searcher starts in the origin

s = (0,0); see Figure 3.9. The goal (i.e., the ray’s origin t) is discovered as soon as the searcher reaches

its height, yR. After the searcher has discovered the goal, it moves directly to the goal. Note that the

shortest distance from s to R′ can be fixed to 1 because scaling has no influence on the competitive ratio.

We would like to find a search path, Π, so that for any goal, t, the ratio
|Πp

s |+|pt|
|st| ≤C holds, where C

is the smallest achievable ratio for all search paths.

Theorem 3.5 There is a strategy Π with an optimal competitive factor of 1.059 . . . for searching the

origin of a ray, R, that emanates from a known ray R′ perpendicular to R. [EFK+06]

Proof. Apparently a good search path moves simultaneously along and towards the wall; that is, in

positive X - and Y -direction. Note that the competitive factor for any reasonable strategy converges to 1

for goals with very small Y -coordinate and also for goals with a large Y -coordinate. Therefore, the first

part of our path, Π, is a line segment up to a point (a,b). The second part is a curve, f (x), that converges

70 Chapter 3 Online searching for objects

1 5 10 15 20

 4

5

6

7

8

9

C

3

Abstand vom Startpunkt

Figure 3.7: Optimal competitive ratio for given reach.

to the wall and maintains the competitive factor that was achieved by the line segment in the first part of

the search; see Figure 3.9.

Thus, we solve two tasks.

1. We will design a search path Π that consists of the following three parts (or conditions); see

Figure 3.10(i).

Π1: A straight line segment from (0,0) to some point (a,b) where the competitive ratio strictly

increases from C = 1 to Cmax for goals from (1,0) to (1,b).

Π2: A strictly monotone curve f from (a,b) to some point (1,D) on R′ where the competitive

ratio is exactly Cmax for all goals from (1,b) to (1,D).

Π3: A ray starting from (1,D) to (1,∞) where the competitive ratio strictly decreases from Cmax

to 1 for goals from (1,D) to (1,∞).

Furthermore, we prove that the full path Π is convex. The competitive ratio of Π is Cmax.

2. We will show that such a path is optimal and the best achievable ratio is Cmax.

We start with the second task. Let us assume that we have designed a search path Π with the given

properties and let us assume that there is an optimal search path K with K 6= Π, see Figure 3.10(ii).

3.2 Searching for a ray in the plane 71

t

s

Π
p
s

R p

|Πp
s |+|pt|
|st| ≤C

Figure 3.8: Die Suche nach dem Ursprung t eines Strahles R.

(1,0)s = (0,0)

X

Y

R

Π
(1,yR) = t

yR ≥ 0

R′

p

Figure 3.9: A strategy for the window shopper!

The path K might hit the ray B from (1,b) to (−∞,b) at a point p1 to the left of (a,b). Then the ratio
|Kp1

s |+|p1(1,b)|
|s(1,b)| is bigger than Cmax = |s(a,b)|+|(a,b)(1,b)|

|s(1,b)| . On the other hand, K might move to the right of

(a,b) and hits Π2 at a point p2 between B and the ray D from (1,D) to (−∞,D). In this case, the length

of K
p2
s has to be bigger than |Πp2

s | because Π is fully convex. Thus, the ratio
|Kp2

s |+|p2(1,p2y)|
|s(1,p2y)|

is bigger

than Cmax =
|Πp2

s |+|p2(1,p2y)|
|s(1,p2y)| , where p2y

denotes the Y -coordinate of p2. This also holds if K hits R′ first

and p2 is equal to (1,D); see the dotted path in Figure 3.10(ii).

This means that K has to follow Π from s up to some point beyond B and might leave Π2 then. In

this case K has at least the ratio Cmax and Π is optimal, too.

It remains to show that we can design a path with the given properties. As already mentioned, the

motivation for the construction is the following: In the very beginning the ratio starts from 1 and has

to increase for a while, this is true for any strategy. Additionally, any reasonable strategy should be

monotone in x and y. Moving backwards or away from the window will allow shortcuts with a smaller

ratio. Therefore it is reasonable that we will get closer and closer to the window R′ and the factor

should decrease to 1. So, finally, we can hit R′ because at the end the ratio will not be the worst case.

Furthermore, in many applications strategies are designed by the fact that they achieve exactly the same

factor for a set of goals. Altogether, we would like to design a path Π by the properties formulated above,

and — as we already know — such a strategy is optimal.

With the first two conditions for Π1 and Π2 we determine a and b. We consider the line segment

from the origin (0,0) to (a,b) with a,b > 0 to be parametrized by (ta, tb) for t ∈ [0,1]. The competitive

factor for Π1 is given by

C(t) =
t
√

a2 +b2 +1− ta√
1+ t2b2

, t ∈ [0,1] .

72 Chapter 3 Online searching for objects

Π2

Π3

(i) (ii)

B

DD

B

(1,0)

Π2

(1,0)

R′R′

Π3

Π1

Cmax

Π1

Cmax

(0,0)(0,0)

(a,b)
(1,b) (1,b)

(1,D) (1,D)

(a,b)p1

p2
K

K

Figure 3.10: An arbitrary search path K is not better than Π.

We want C(t) to be a monotone and increasing function. From C′(t)≥ 0 ∀t ∈ [0,1] we conclude

C′(t) =
(
√

a2 +b2−a)(1+ t2b2)− (t(
√

a2 +b2−a)+1)tb2

√
1+ t2b2(1+ t2b2)

≥ 0 ∀t ∈ [0,1]

⇔
√

a2 +b2−a≥ tb2 ∀t ∈ [0,1]

⇔
√

a2 +b2−a≥ b2

⇔ a2 +b2 ≥ b4 +2ab2 +a2

⇔ 1−2a≥ b2 .

Hence, a≤ 1−b2

2
follows. From now on we set a := 1−b2

2
. For t = 1 and a := 1−b2

2
we obtain a competitive

factor of

√
a2 +b2 +1−a√

1+b2
=

√

(1−b2

2
)2 +b2 +1− 1−b2

2√
1+b2

=

√
1−2b2+b4+4b2

4
+ 1

2
+ b2

2√
1+b2

=

√

(1+b2

2
)2 + 1

2
(1+b2)

√
1+b2

=
√

1+b2 =: C . (3.4)

We can consider the line segment Π1 also as a function of x ∈ [0,a]. Now, C is the worst case

competitive factor for x ∈ [0,a] and goals t between [1,0] and [1,b].
For Π2 we construct a curve f (x) for x ∈ [a,1] that runs from [a,b] to some point [1,D] and achieves

the ratio C =
√

1+b2 for all goals t between [1,b] and [1,D]. This means that the length of the path of

the searcher (i.e., the line segment up to (a,b), the part of the curve f up to the height yR, and the final

line segment to the goal (1,yR)) is equal to C times the Euclidean distance from the origin (0,0) to the

goal (1,yR). Thus, f can be defined by the differential equation

√

a2 +b2 +1− x+

∫ x

a

√

1+ f ′(t)2 dt =C ·
√

1+ f (x)2. (3.5)

We would like to rearrange equation (3.5) in order to apply standard methods for solving differential

equations. Derivating equation (3.5) and squaring twice gives

√

1+ f ′(x)2−1 =
C

2
· 1
√

1+ f (x)2
·2 f (x) f ′(x)

⇔ 1+ f ′(x)2−2

√

1+ f ′(x)2 +1 =C2 f (x)2 f ′(x)2

1+ f (x)2

3.2 Searching for a ray in the plane 73

⇔ f ′(x)2

[

1−C2 f (x)2

1+ f (x)2

]

+2 = 2

√

1+ f ′(x)2

⇔ f ′(x)4

[

1−C2 f (x)2

1+ f (x)2

]2

+4 f ′(x)2

[

1−C2 f (x)2

1+ f (x)2

]

= 4 f ′(x)2 .

The curve f was assumed to be strictly monotone, which means f ′(x) 6= 0. Therefore we have

⇔ f ′(x)2

[

1−C2 f (x)2

1+ f (x)2

]2

= 4C2 f (x)2

1+ f (x)2

⇔ f ′(x)2 =

[
1+ f (x)2

1+(1−C2) f (x)2

]2

4C2 f (x)2

1+ f (x)2

⇔ f ′(x)2 = 4C2 (1+ f (x)2) f (x)2

(1+(1−C2) f (x)2)2

⇔ f ′(x) = 2C

√

1+ f (x)2 f (x)

1+(1−C2) f (x)2
. (3.6)

Note that the point (a,b) = (1−b2

2
,b) lies on f and C is equal to

√
1+b2. Altogether, we have to

solve the differential equation

y′ = 1 ·2
√

1+b2

√

1+ y2y

1−b2y2
= 1 ·g(y) (3.7)

for y = f (x) with starting point (1−b2

2
,b).

Equation (3.7) is a first order differential equation y′ = h(x)g(y) with separated variables and point

(k, l) on y. A general solution is given by

∫ y

l

dt

g(t)
=

∫ x

k
h(z)dz ;

see Walter [Wal86]. Thus, we have to solve

∫ y

b

1−b2t2

2
√

1+b2
√

1+ t2t
dt =

∫ x

(1−b2)/2
1 ·dz = x− (1−b2)/2

By simple analysis, we obtain

x =−
b2
√

1+ y2 + arctanh

(

1√
1+y2

)

− arctanh
(

1√
1+b2

)

−
√

1+b2

2
√

1+b2

which is the solution for the inverse function x = f−1(y). By simple analysis we get

x′ =
1

g(y)
=− (b2y2−1)

2
√

1+ y2y
√

(1+b2)
≥ 0 for y ∈ [0,1/b]

and

x′′ =− (b2y2 +2y2 +1)

2(1+ y2)3/2
√

1+b2y2
≤ 0 for y≥ 0, .

Because x = f−1(y) is concave in the given interval, y = f (x) is convex. Additionally, f−1 attains a

maximum for y = 1
b
.

Altogether we have a situation for the inverse function x = f−1(y) for y ∈
[
0, 1

b

]
as shown in Fig-

ure 3.11.

74 Chapter 3 Online searching for objects

Y

R′

(
0, f−1

(
1
b

))

f−1

(i)

X

f−1

(0,1)

(0,0.43 . . .)

(0,1)
R′

(
1
b
, f−1

(
1
b

))

Y

X

(ii)

(0.34 . . . ,0.43 . . .)

(0,0) (2.85 . . . ,0)(0.34 . . . ,0)

(2.85 . . . ,1)

(0,0)
(b,0)

(

0, 1−b2

2

) (

b, 1−b2

2

)

(
1
b
,0
)

Figure 3.11: The inverse situation of the window shopper problem. The curve f−1 should hit the line X = 1.

Now, we have to find a value for b so that f−1(1
b
) is equal to 1, so that f−1 behaves as depicted in

Figure 3.11(ii). That is, we have to find a solution for

1 =−
b2
√

1+ 1
b2 + arctanh

(

1
√

1+ 1

b2

)

− arctanh
(

1√
1+b2

)

−
√

1+b2

2
√

1+b2
. (3.8)

This fixes b and, in turn, D to 1
b
. Note that in this case y = f (x) has the desired properties for

x ∈ [a,1] =
[

1−b2

2
,1
]

.

We have already seen that y = f (x) is convex for x ∈ [a,1]. Additionally, the line segment from (0,0)
to (a,b) is convex. To show that the conjunction of both elements is also convex, we have to show that

the tangent to f at (a,b) is equal to a prolongation of the line segment; see Figure 3.11. In other words,

we have to show f−1′(b) = a
b
= 1−b2

2b
. This is equivalent to 1

g(b) =
1−b2

2b
which is obviously true.

By solving equation (3.8) numerically, we get b = 0.34 . . . This gives D = 1
b
= 2.859 . . ., a = 1−b2

2
=

0.43 . . . and a worst-case ratio C =
√

1+b2 = 1.05948 . . . The corresponding curve f−1 is shown in

Figure Figure 3.11(ii).

Altogether, by combining Π1 (the line segment), Π2 (the constructed curve f), and Π3 (the ray from

(1,D) to (1,∞)), we obtain a convex curve with the given properties and an optimal competitive factor

of C =
√

1+b2 = 1.05948 . . . 2

3.2.2 General rays in the plane

Now we turn over to arbitrary rays in the plane. We will first show that a logarithmic spiral is an

appropriate competitive strategy, finally we will construct a lower bound. A logarithmic spiral is defined

in polar coordinates by (ϕ,d ·eϕcot(α)) for d > 0 and −∞ < ϕ < ∞ see Figure 3.12 for an example. Note,

that we can scale so that d = 1.

3.2 Searching for a ray in the plane 75

A logarithmic spiral has some nice properties. The center point of the spiral is given by the origin

s = (0,0). The angle α expresses the excentricity of the spiral. For every point p on the spiral the line

through p and s and the tangent Tp on p build the same angle α. For α = π/2 the spirals degenerates

to a circle. For two points a and b on the spiral, the length of the spiral between a and b is given by
1

|cosα|(|bs|− |as|) for |as|> |bs|. This means that the length of the spiral from the center to some point b

is given by 1
|cosα| |bs|, for details see also [BSMM00].

The spiral expands successively and will finally hit every ray in the plane. Obviously, the worst case

is attained for a tangent to the spiral. In the following we denote a spiral path by Π and the corresponding

ratio by CΠ.

α s

α

p

p′ t

r1

t1

r

Figure 3.12: A logarithmic spiral is defined by an angle α. A tangent to the spiral will maximize the ratio.

Lemma 3.6 Given a logarithmic spiral Π, the ray that maximizes the ratio CΠ is a tangent T to the

spiral.

Proof. Consider a ray r emanating from the point t, and the first intersection p with the spiral; see

Figure 3.12. We can increase the ratio CΠ by rotating r counterclockwise around p until the ray is almost

a tangent to the spiral. Additionally, t1 gets closer to s. Note, that p′ in Figure 3.12 is not actually an

intersection, but the searcher moving on the spiral slightly misses the ray r1 in p′, but detects the ray in

p. However, p′ is arbitrarily close to the spiral; thus, we consider p′ to be a point on the spiral. We call

p′ tangent point. 2

Now we will proceed as follows, we will compute an optimal spiral Π given by an optimal angle α

for the orthogonal points, q′, on the tangent Tq, see Figure 3.13. Fortunately, the given ratio CΠ(α) is

the same for all tangents! Afterwards, an adversary strategy can move the starting point of the ray along

the tangent in order to maximize the ratio, see Figure 3.13. This means that the adversary strategy can

choose the angle β.

By the law of sine we have |st|= |sq′|
sinβ and

|tq′|
cosβ = |ts|. Now we have

|πp
s |+|pq′|
|sq′| =CΠ(α) (the ratio for q′)

and
|πp

s |+|pq′|+|q′t|
|st| =: CΠ(α,β) (the ratio for t). Substituting the above dependencies we have: CΠ(α,β) =

CΠ(α)sin(β)+cos(β). Altogether, we first will minimize CΠ(α) over α and then we maximize CΠ(α,β)
over β.

Lemma 3.7 We can minimize the ratio for the closest point, q′, on a tangent Tq by choosing an optimal

angle α. If we attain a ratio CΠ(α) for the orgin q′, an adversary can move the starting point along the

tangent which is determined by an angle β. The ratio will be given by CΠ(α,β) :=CΠ(α)sin(β)+cos(β).

76 Chapter 3 Online searching for objects

π−α

s

β

p

q′
q

Tq

t

Figure 3.13: We would like to optimize the spiral for the closest point, q′, from s on a tangent Tq.

Note, that it makes no sense for the adversary to move the starting point to the right of q′, the ratio

will obviously decrease.

α

s

p

γ(α)

q

Tq

q′

Figure 3.14: Let q′ be the point on Tq with shortest distance to s. If the angle γ(α) in △qsp is given, we can

determine the ratio for q′.

Now, we would like to compute the distance |qq′|. In the following we consider α < π/2 and the

spiral turns counterclockwise, see Figure 3.14. This has the advantage that the angles are positive in the

mathematical sense. Let γ(α) denote the angle between sq and sp, see Figure 3.14. For q := (ϕq,e
ϕq cot α),

we have p := (ϕq +2π+ γ(α),e(ϕq+2π+γ(α))cot α). The angle γ(α) can be determined by an equation. The

proof of Lemma 3.8 is a simple exercise.

Note, that a line running through q′ = (ϕq′ ,rq′) and perpendicular to a line with angle ϕq′ is given in

polar coordinates by (ϕ,
rq′

cos(ϕ−ϕq′)
). In our case the tangent Tq is perpendicular to the line given by ϕq′

and runs through q′. In turn the angle ϕq′ is given by ϕq−π/2+α.

Lemma 3.8 The angle γ(α) := 6 qsp is given by the solution to

sinα

sin(α− γ(α))
= Ecot α(2π+γ(α)) .

3.2 Searching for a ray in the plane 77

Lemma 3.8 gives us a formula for computing γ(α) at least numerically for every α. Therefore we

will be able to compute the best spiral for a tangent Tq on q.

Theorem 3.9 Given a spiral and a tangent, Tq, to the spiral. Let q′ be the closest point to s on Tq. The

ratio CΠ(q
′) for q′ on Tq depends only on the spiral parameter α and is given by

Cq′(α) =
Ecot α(2π+γ(α)))

sinα · cosα
+

Eb(2π+γ(α)) · sin(γ(α))

sin2 α
+ cotα .

Its minimum value is 22.49084026 . . . for cot αopt = 0.11371 . . . or αopt := 1.4575 . . .

Proof. Consider the triangle △psq, see Figure 3.14. Because q is a point on the spiral we have |sq| =
Ecotα(θq) for some θq. Additionally, we have θp = θq + 2π + γ(α). Further, we have 6 sqp = π−α.

Applying the law of sine yields

|sp|
sin(π−α)

=
|sp|
sinα

=
|pq|

sin(γ(α))
⇔ |pq| = Ecot α(θp) sin γ(α)

sin α
=

Ecot α(θq+2π+γ(α)) sin(γ(α))

sinα
.

Because the triangle △sq′q is right angled, we have |qq′| = |sq|cos α = Ecot α(θq) cosα; thus, the

distance |pq′|= |pq|+ |qq′| is given as

|pq′|= Ecot α(θq+2π+γ(α)) sin(γ(α))

sinα
+Ecotα(θq) cosα .

The length of the arc Π
p
s on the spiral from s to p is given by |Πp

s | = E cotα(θq+2π+γ(α))

cosα , Now, using

|sq′|= |sq|sin α = Ecot α(θq) sin α, we can compute the ratio Cq′(α):

Cq′(α) =
|Πp

s |+ |pq′|
|sq′|

=
1

cosα Ecot α(θq+2π+γ(α))+ 1
sinα Ecot α(θq+2π+γ(α)) sinγ(α)+Ecot αθq cosα

Ecot αθq sinα

=
1

cosα Ecot α(2π+γ(α))+ 1
sinα Ecot α(2π+γ(α)) sin γ(α)+ cosα

sinα

=

(
1

sin α · cosα
+

sinγ(α)

sin2 α

)

Ecot α(2π+γ(α))+ cotα .

We observe that Cq′(α) is independent of θq, that is, the value of CΠ(q
′) is the same for every given

tangent T . Now, the searcher is allowed to minimize the search costs by choosing an appropriate value

for α. Evaluating Cq′(α) numerically yields a minimum value of 22.49084026 . . . for cotα = 0.11371 . . .
or αopt := 1.4575 . . . 2

Finally, an adversary is allowed to choose a starting point, t, along the tangent Tq. By Lemma 3.7

we have to choose β so that CΠ(αopt,β) = C(αopt)sin β+ cosβ is maximal. Therefore we have to

find a solution for C(αopt)cos β− sinβ (first derivative in β) which gives βworst := 1.526363 . . . and

CΠ(αopt,βworst) = 22.51306056 . . .

Corollary 3.10 The spiral strategy with αopt := 1.4575 . . . is optimal among all spirals and obtains a

competitive factor of CΠ(αopt,βworst) = 22.51306056 . . . for angle βworst := 1.526363 . . .

Finally, we are interested in a lower bound. To get a lower bound on the competitive ratio for our

problem, we discuss the following subproblem: We require that the ray, R, we are looking for is part of

a rays that emanates from the searcher’s start point, s (i.e., the start point, s, lies on the the extension of

R to a straight line)

78 Chapter 3 Online searching for objects

s

t

R

Figure 3.15: A ray, R, that emanates from t and is part of a ray that emanates from s.

If we consider the full bundle of lines passing through s, the given problem is equivalent to the

problem of searching for a point in the plane as presented by Alpern and Gal [AG03]. We assume that

the searcher detects the goal if it is swept by the radius vector of its trajectory; that is, the searchers knows

the position of the goal as soon as it hits the ray emanating from the goal. Alpern and Gal [AG03] showed

that among all monotone and periodic strategies, a logarithmic spiral represented by polar coordinates

(θ,Ebθ) gives the best search strategy in this setting. A strategy S represented by its radius vector X(θ)
is called periodic and monotone if θ is always increasing and X also satisfies X(θ+2π)≥ X(θ).

The factor of the best achievable monotone and periodic strategy is given by 17.289 . . ., see Alpern

and Gal [AG03]. Note, that the searcher does not have to reach the ray’s origin in this setting.

Unfortunately, it was not shown that a periodic and monotone strategy is the best strategy for this

problem. Alpern and Gal state that it seems to be a complicated task to show that the spiral optimizes

the competitive factor. Thus, the given factor cannot be adapted to be a lower bound to our problem.

Therefore, we consider a discrete bundle of n rays that emanate from the start and which are separated

by an angle α = 2π
n

, see Figure 3.16. We are searching for a goal on one of the n rays.1 Again, the goal

is detected if it is swept by the radius vector of the trajectory. Note that if n goes to infinity we are back

to the original problem. But we can neither assume that we have to visit the rays in a periodic order nor

that the depth of the visits increases in every step. Thus, we represent a search strategy, S, as follows: In

the kth step, the searcher hits a ray—say ray i—at distance xk from the origin, moves a distance βkxk−xk

along the ray i, and leaves the ray at distance βkxk with βk ≥ 1. Then, it moves to the next ray within

distance

√

(βkxk)2−2βkxkxk+1 cos γi,i+1 + x2
k+1, see Figure 3.16. Note, that any search strategy for our

problem can be described in this way.

α

xk+2 βk+1xk+1

xk+1

xk

βkxk

Figure 3.16: A bundle of n rays and the representation of a strategy.

Let us assume that the ray i is visited the next time at index Jk. The worst case occurs if the searcher

1Note that the searcher is not confined to walk on the rays, but can move arbitrarily in the plane; in contrast to the m-ray

search problem.

3.3 Searching in street polygons 79

slightly misses the goal while visiting ray i up to distance xk. Instead, it finds the goal at step xJk
on ray i

arbitrarily close to βkxk. Either we have xJk
> βkxk; that is, the searcher discovers the goal in distance xJk

on ray i and moves xJk
−βkxk to the goal, or we have xJk

< βkxk. In the latter case, the searcher moves

βkxk− xJk
from xJk

and finds the goal by accident. In both cases, the searcher moves |xJk
−βkxk| in the

last step. Altogether, the competitive factor, C(S), is bigger than

|xJk
−βkxk|+∑

Jk−1
i=1 βixi− xi +

√

(βixi)2−2βixixi+1 cosγi,i+1 + x2
i+1

βkxk

.

By simple trigonometry, the shortest distance from βixi to a neighboring ray is given by βixi sin 2π
n

.

Fortunately, this distance is smaller than the distance

√

(βixi)2−2βixixi+1 cosγi,i+1 + x2
i+1

to any other ray. Thus, we have

C(S)>
∑

Jk−1
i=1 βixi

βkxk

sin
2π

n
.

Altogether, we have to find a lower bound for
∑

Jk−1

i=1 fi

fk
, where Jk denotes the index of the next visit of the

ray of xk and fi = βixi denotes the search depth in step i. Fortunately, this problem is the same problem

as in the competitive analysis for the usual m-ray problem where the searcher can move only along the

rays. It was shown in Lemma 3.3 (see also Gal [Gal80] and Baeza-Yates et al. [BYCR93]) that for this

problem there is an optimal strategy that visits the rays with increasing depth and in a periodic order; that

is, Jk = k+n and i = k. Applying Theorem 3.2 the best achievable strategy is given by fi = (n/(n−1))i .

Altogether, this results in a function

(n−1)

(
n

n−1

)n

sin
2π

n

for n rays. We can make n arbitrarily big because our construction is valid for every n. Note that we also

have a lower bound for the problem of searching a point in the plane; this lower bound is close to the

factor that is achieved by a spiral search.

Theorem 3.11 For the ray search problem there is no strategy that achieves a better factor than

lim
n→∞

(n−1)

(
n

n−1

)n

sin
2π

n
= 17.079 . . .

Additionally, every strategy for searching a point in the plane achieves a competitive factor bigger then

17.079 . . . (the optimal spiral achieves a factor of 17.289 . . . [Gal80]).

3.3 Searching in street polygons

Now we consider a special class of polygons, such that a competitive search still can be performed. By

the m-ray search problem we already know that a constant competitive strategy for searching a point in

arbitrary polygons does not exist.

The following polygons resembles streets or rivers where the path to the endpoint is not arbitrary

although the path can make many windings and there are many caves where the goal might be loacated.

Formally, we define a street polygon as follows:

Definition 3.12 Let P be a simple polygon with two points s and t on the boundary. P is denoted as a

street (polygon), if the two boundary chains PL and PR of P between s and t are weakly visible, i.e., any

point from PL sees at least one point from PR and vice versa. [Kle91]

80 Chapter 3 Online searching for objects

πOpt

PLs

t
PR

Figure 3.17: A street polygon.

Figure 3.17 shows an example. The main idea is that the shortest path from s to t also sees the

boundary chains. Intuitively, if you use a street efficiently, you will always see the boundary chains.

Many structural properties have been proved for street polygons. For example, for a given polygon

P one is interested on all possible pair of points (s, t) such that P is a street polygon. Surprisingly,

this problem can be computed in linear time; see [THL98, DHN97]. In this section we consider the

searching problem. That is, the start point s is given, the agent is equipped with a vision system and we

are searching for a target t. The only information is, that P is a street for s and t. Against the shortest

path to t we are searching for a competitive strategy with small ratio.

1

m

tr1

s

√
2

√
2

tℓ

π
2

1

t? t?

Figure 3.18: Lower bound for searching the target t.

A lower bound for the ratio in our problem can be constructed as follows.

Theorem 3.13 (Klein, 1991)

There is no strategy that finds the target t in a street with a path of length smaller than
√

2 ·πOpt. The

competitive ratio is at least
√

2. [Kle91]

Proof. Consider Figure 3.18. The agent is located at s andsees tℓ and tr. The target t lies behind one

of them but the agent can only detect t if the line between tℓ and tr is visited. Then the agent can move

to t. If the agent visits the segmet between tℓ and tr to the left (right) of the midpoint m, the target is

positioned at the right (left). Thus the best the agent can achieve is moving directly to m. Thus we have

(where ε−→ 0):

|πRob|= 2 und
|πRob|
|πOpt|

=
2√
2
=
√

2.

2

In search of t we can make use of some structural properties. Consider Figure 3.19(i). The agent is

located at s and does not see the caves (the shaded parts). A cave is generated by a corresponding reflex

vertex2 of the polygon. We can subdivide the current cave generating reflex vertices into the set of left

2Vertices, with inner angle > π.

3.3 Searching in street polygons 81

q

PR

vr=v1
r

vℓ=v1
ℓ

v2
r

t

P′
t

vℓ

eℓ

v0
ℓ

PL

E(eℓ)

PR

(ii)

s
(i)

PL

s

u

φ

v3
ℓ

v2
ℓ

Figure 3.19: Typical situations for the task of searching the target in a street polygon.

reflex vertices (the cave is to the left) and right reflex vertices (the cave lies to the right). We call the

vertices left or right reflex vertices, respectively.

Furthermore, we can consider the left reflex vertices in clockwise and the right reflex vertices in

counter-clockwise order. One of these sequences can also be empty; in Figure 3.19(ii) there are no right

reflex vertices.

We would like to argument that the unknown target t can only be located behind the rightmost left

reflex vertex, say vl , or the leftmost right reflex vertex, say vr. The target cannot be located in one of

the other caves. Assume that this is not the case. Assume that for example in Figure 3.19(i) the target is

in the cave below vl . In this case there is a point u on the right chain closely after vl that does only see

points on the right chain. This means that any reasonable strategy can concentrate on the current triangle

of c, vl and vr, where c is the current location of the agent. It only makes sense to run into this triangle

and let the opening angle at c increase.

If there is only one vertex vl or vr, it is clear that the target can only lie behind this remaining vertex

and any reasonable strategy move directly to this vertex. It is also clear the the shortest path to the target

has to run over this vertex. The same holds, when the target gets visible. The agent directly moves toward

it.

Formally, we consider the following cases or events while the agent moves into the triangle of c, vl

and vr.

• The target becomes visible. The agent moves toward it.

• The cave behing vℓ or vr becomes visible and does not contain the target; as in point q in Fig-

ure 3.19(i). The goal has to be behind the remaining vertex, the agent directly moves toward it.

• Behind the current vertex vℓ or vr another left or right reflex vertex becomes visible. For example

v2
ℓ appears behind vℓ. In this case the current left reflex vertex changes from vℓ to v2

ℓ . The agent

runs into the triangle of c, v2
ℓ and vr

The last event successively builds segments of convex chain constructed form reflex vertices v1
ℓ ,v

2
ℓ ,v

3
ℓ , . . . ,v

i
ℓ

and v1
r ,v

2
r ,v

3
r , . . . ,v

j
r to the left and to the right starting from s. The agent only moves inside these two

82 Chapter 3 Online searching for objects

tℓ

vℓ

φ

vr

s

φ0

tr

Figure 3.20: A funnel polygon.

chains. Therefore for simplicity we simply forget the original caves and only consider such funnel situ-

ations or so called funnel polygons. Beginning from s we have two convex chains that are finally closed

by a segment tl and tr as shown in Figure 3.20. We assume that the current goal is either behind tl or tr.

Actually there are two also caves behind tl and tr Altogether the funnel polygons will invoke the same

path as in the original polygon with caves.

These funnel situations are the only situations that can provoke a detour. If one such situation is

resolved, either the goal is reached or the agent is located at a point on the shortest path to the goal. This

means that we can consider this situation as the main challenge. If we can guarantee a competitive ratio

of C for any single funnel, we can combine the path to a C-competitive strategy in total.

Therefore we concentrate on such polygons.

Definition 3.14 A simple polygon is constructed by two convex chains PL and PR starting at a convex

vertex s. The polygon can be closed by the segement tℓtr of the endpoints of the chains; see seeFig-

ure 3.20. such a polygon is denoted as a funnel (polygon),

Another important observation for the exploration of the funnel is, that the opening angle φ for the

current position c and the current active reflex vertices vℓ und vr will increase monotonically for any

reasonable strategy. The agent starts with a opening angle φ0 at s and finally we will reach tℓtr with

opening angle 180◦. Therefore it is quite natural to describe or parameterise a strategy by the opening

angle φ.

First, we define a more general lower bound dedicated to the opening angle l φ. We can generalize

Theorem 3.13 as follows:

Lemma 3.15 For a funnel polygon with opening angle φ≤ π there is no strategy that has smaller path

lenght than Kφ · |πOpt| against the shortest path to the goal, where

Kφ :=
√

1+ sinφ.

Any strategy is at least Kφ competitive.

Proof. Consider Figure 3.21. By the sam argument as in the proof of Theorem 3.13 the best an agent

can do is moving directly to the midpoint m. Any other movement results in a larger detour since we can

place the target afterwards. Now the agent sees the target and moves toward it. 3. For φ≤ π we have

|πS|
|πOpt|

=
ℓcos

φ
2
+ ℓsin

φ
2

ℓ
=
√

1+ sinφ.

2

3The path of length ε from vℓ orvr to t need not be considered

3.3 Searching in street polygons 83

ℓ

ℓ · cos
φ
2

ℓ · sin
φ
2

trtℓ

φ

s

m

Figure 3.21: Generalized lower bound.

Note that for the final opening angle φ = π and Kφ = 1 the agent will always move corretly, since

the target is visible now. For φ = π
2

we have the ratio Kφ =
√

2 as in Theorem 3.13. For 0 ≤ φ ≤ π the

function Kφ gives a curve that starts at 1 rises up monotonically to
√

2 at π
2

and decreases monotonically

toward 1 at π.

Assume that the agent explores a funnel starting from s with opening angle φ0 and follows a path

with monotonically increasing opening angles until tℓtr is visited and φ = π holds.

For π
2
≤ φ1 < φ2 we have Kφ1

> Kφ2
, and the competitive ratio for the overall exploration is dominated

by the smaller angle. For φ1 < φ2 ≤ π
2

we have Kφ1
< Kφ2

≤
√

2, the ratio is dominated by the larger

opening angle If the agent starts from an opening angle φ0 < π
2

along a path to angle φ = π there will

always be a point such that the opnening angle φ = π
2

is attained. Therefore the worst case ratio
√

2 is

always included.

It seems to make sense to consider the case φ0 <
π
2

and φ0 ≥ π
2

separately. We start with φ0 ≥ π
2
. We

already have a successful strategy for φ = π. The following idea is that we apply a backward analysis

that tells us how to prolong a successful strategy for opening angle φ2 to a successful strategy for opening

angle φ1 < φ2. By the following lemma we design a requirement for any path w from angle φ1 to φ2.

Lemma 3.16 Let Π be a strategy that can reach the target of any funnel polygon with opening angle

φ2 ≥ π
2

by competitve ratio Kφ2
. We can extend this strategy to a Kφ1

competitive startegy for funnel

polygons with opening angle φ1 with φ2 > φ1 ≥ π
2
, if the path w between the two corresponding points

fulfils the length condition Equation 3.9 for the current situation as depicted in Figure 3.22.

r1

vℓ vr

w

φ2

φ1

p1

p2

ℓ1

r2
ℓ2

Figure 3.22: A path w from p1 with angle φ1 to p2 with angle φ2.

Proof. We consider a triangle with opening angle φ1, start point p1 and a path w to a point p2 with

opening angle φ2; see Figure 3.22. From p2 the agent can use the strategy Π for the angle φ2 which is

known by assumption. Π is Kφ2
competitive. Let us assume that during the movement w the vertices vℓ

and vr do not change.

Let ℓ1 and ℓ2 denote the distances from p1 and p2 to vℓ, as depicted in Figure 3.22, r1 and r2 are

defined analogously. If the goal lies behind vℓ we can assume that the overall path length for πt
p1

from p1

to t is:

|πt
p1
| ≤ |w|+Kφ2

· ℓ2.

84 Chapter 3 Online searching for objects

We would like to guarantee that the overall strategy is Kφ1
-competitive, therefore we require: Kφ1

=
|πt

p1
|

|πOpt| ≥
|w|+Kφ2

·ℓ2

ℓ1
, also

Kφ1
· ℓ1 ≥ |w|+Kφ2

· ℓ2.

Analogously, if the goal is behind vr, we require Kφ1
· r1 ≥ |w|+Kφ2

· r2.

If we can guarantee that the path w from p1 to p2 fulfils the length condition

|w| ≤min{Kφ1
ℓ1−Kφ2

ℓ2 , Kφ1
r1−Kφ2

r2 }, (3.9)

we conclude that the overall strategy starting at p1 attains a competitive ratio of Kφ1
for the funnel with

opening angle φ1.

tℓ

vℓ

φ2

w

φ0 p1

p2

ℓ2 r2

ℓ1

ℓ′2

v′ℓ tr

pend

W

φ1

r1

r0

rend

ℓend

vr

s

ℓ0

PR

PL

Figure 3.23: At p2 a new left reflex vertex is detected.

Now it is clear that from time to time the reflex vertices in the funnel will change. The path w and the

condition Equation 3.9 should still guarantee the above conclusion. Therefore we consider the situation

that condition Equation 3.9 if fulfilled but precisely at p2 there is a change of the reflex vertices as shown

in Figure 3.23. In p2 behind vℓ a new left reflex vertex v′ℓ appears. Since Equation 3.9 holds we can

conclude:

|w| ≤ Kφ1
ℓ1−Kφ2

ℓ2

= Kφ1
ℓ1−Kφ2

ℓ2 +Kφ2
ℓ′2−Kφ2

ℓ′2
≤ Kφ1

(ℓ1 + ℓ′2)−Kφ2
(ℓ2 + ℓ′2) (3.10)

The last inequalityl is true, since from Lemma 3.15 for φ2 > φ1 ≥ π
2

we have Kφ2
< Kφ1

. Note that

ℓ1+ℓ′2 respectively ℓ2+ℓ′2 denote the lengths of the shortest paths from p1 respectively p2 to v′ℓ. Equation

Equation 3.10 says that the condition Equation 3.9 takes care that also for changes of the reflex vertices,

we have obtain a Kφ1
competitive strategy at p1 2

Assume that Equation 3.9 holds for all small changes of opening angles for the overall path W from

s t opend, we conclude

|W | ≤min{Kφ0
· |PL|−KπℓEnd , Kφ0

· |PR|−KπrEnd }.

Altogether we have a Kφ0
competitive strategy in this case.

Now it is sufficient to guarantee that the agent fulfils Equation 3.9 during the movements. The

idea of fulfilling this requirement is as follows: The portions Kφ1
ℓ1−Kφ2

ℓ2 and Kφ1
r1−Kφ2

r2 somehow

express how many path length w we can use in the next step for the left or the right location of the goal,

3.3 Searching in street polygons 85

respectively. Since we do not know where the target will be at the end, we do not want to let one side

have an advantage at this stage.

Therefore we would like to guarantee that both values are the same. This gives

Kφ2
(ℓ2− r2) = Kφ1

(ℓ1− r1) .

Fortunately, by this requirement we indeed define a special curve for any starting situation with angle φ0

and length l0 and r0. Let A = Kφ0
(ℓ0− r0) The curve that fulfils the above equation all the time is given

by

X(φ) =
A

2
· cot

φ
2

1+ sinφ
·

√
(

1+ tan
φ

2

)2

−A2

Y (φ) =
1

2
· cot

φ

2
·
(

A2

1+ sinφ
−1

)

.

We will now explain how we have developed the formulas above.We choose a coordinate system

with axis paralell to vl vr, the midpoint of vl vr is the origin. We scale such that |vl vr| = 1. Let p be the

point on the curve with opening angle φ; see Figure 3.24. We have starting values φ0, l0 and r0 and set

A := Kφ0
(ℓ0− r0).

In order to find p we have to fulfil two conditions. First, the difference l(p)− r(p) of the distances

from p to vl and vr has to equal A
Kφ

. The locus of all such point is a hyoerbola. Second the angle at p

with respect to vl and vr has to be φ. The locus of all such points is a circle; see Figure 3.24. This holds

because of the Thales’ circle property.

φ
2

1
4

π−φ

(0,0)

c = 1
2

z x

l(p)
vrvl

φ

p

r(p)
a

Figure 3.24: The left arc of the hyperbola is defined by vl , vr and (l(p)−r(p)) = A
Kφ

and the circle running through

vl and vr is defined by the opening angle φ.

The hyperbola is defined by

X2

a2
− Y 2

b2
= 1 ,

86 Chapter 3 Online searching for objects

where 2a = (l(p)−r(p)) = A
Kφ

and b2+a2 = c2 = 1
4

holds. This gives a2 =
(

A
2Kφ

)2

and b2 = 1
4
−
(

A
2Kφ

)2

.

The circle is defined by

X2 +(Y − x)2 = z2 . (3.10)

This means that we have to calculate x and z. From the law of sine we conclude

z

sin π
2

=
1

2sin(π−φ)
=

1

2sin φ

z− x

sin
(

π− π
2
− φ

2

) =
z− x

cos
φ
2

=
1

2sin
φ
2

and therefore z = 1
2sinφ and

x = z− 1

2
cot

φ

2
=

1

2sin φ
− 1

2
cot

φ

2
=

1−2cos2 φ
2

4sin
φ
2

cos
φ
2

=−cotφ

2
.

The intersection of the hyperbola and the circle is indeed given by the above functions X(φ) and Y (φ).
We have found the solutions by a computer algebra system. Here we simply verify that the solutions are

correct. We insert the values into the hyberboly and the circle description.

X2

(
A

2Kφ

)2
− Y 2

(
1
2

)2−
(

A
2Kφ

)2
= 1 (3.11)

X2 +

(

Y +
cotφ

2

)2

=
1

4sin2 φ
. (3.12)

For (3.11) we have

(

A
2
· cot

φ
2

1+sinφ

√
(

1+ tan
φ
2

)2

−A2

)2

(
A

2Kφ

)2
−

(
1
2

cot
φ
2

(
A2

1+sinφ −1
))2

(
1
2

)2−
(

A
2Kφ

)2
=

(

cot
φ
2

Kφ

)2((

1+ tan
φ

2

)2

−A2

)

−
cot2

φ
2

((
A
Kφ

)2

−1

)2

1−
(

A
Kφ

)2
=

(

cot
φ
2

Kφ

)2((

1+ tan
φ

2

)2

−A2

)

+ cot2
φ

2

((
A

Kφ

)2

−1

)

=

cot2
φ

2






(

1+ tan
φ
2

)2

1+ sinφ
−1




 = 1 .

The conclusion is valid since the following identity holds.

1+ sinφ = 1+
2tan

φ
2

1+ tan2 φ
2

=

(

1+ tan
φ
2

)2

1+ tan2 φ
2

(3.13)

3.3 Searching in street polygons 87

For showing (3.12) we proceed as follows:




A

2
· cot

φ
2

1+ sinφ

√
(

1+ tan
φ

2

)2

−A2





2

+

(
1

2
cot

φ

2

(
A2

1+ sinφ
−1

)

+
cotφ

2

)2

=

(

A

2
· cot

φ
2

1+ sinφ

)2((

1+ tan
φ

2

)2

−A2

)

+

(
1

2
cot

φ

2

(
A2

1+ sinφ
−1

))2

+ cot
φ

2

(
A2

1+ sinφ
−1

)
cotφ

2
+

(
cotφ

2

)2

=

(

A

2
· cot

φ
2

1+ sinφ

)2(

1+ tan
φ

2

)2

+

(
1

2
cot

φ

2

)2(

−2
A2

1+ sinφ
+1

)

+ cot
φ

2

(
A2

1+ sinφ
−1

)
cotφ

2
+

(
cotφ

2

)2

=

(

cot
φ
2

2
− cotφ

2

)2

+
A2 cot2

φ
2

4(1+ sinφ)






(

1+ tan
φ
2

)2

1+ sinφ
−2+2

cotφ

cot
φ
2




 =

1

4sin2 φ
+

A2 cot2
φ
2

4(1+ sinφ)

(

tan2 φ

2
+1−2+

1− tan2 φ
2

tan
φ
2

tan
φ

2

)

=

1

4sin2 φ
+

A2 cot2 φ
2

4(1+ sinφ)
·0 =

1

4sin2 φ
.

Here we make use of the identity (3.13) and the equations

(

cot
φ
2

2
− cot φ

2

)2

=
1

4

(
sinφ

1− cosφ
− cos φ

sinφ

)2

=
1

4

1

sin2 φ

and

cotφ =
1− tan2 φ

2

2tan
φ
2

.

Finally, we have to prove that the above curve indeed fulfils the condition for any small piece w.

Experimentally, we make use of the precise curve description and import it into Geogebra or Maple.

Here we approximate the path between any two points by the corresponding segment. This procedure

already indicates that assumption has to be true.

It can also be shown analytically. A lengthy, detailed proof is given in [IKL99] or [Lan00]. Fig-

ure 3.25 shows examples for the curve for different values of φ and A. The figure stems from a Maple

plot.

We obtain the following result:

Corollary 3.17 For a funnel polygon with opening angle φ0 >
π
2

we will find any unknown target within

a competitive ratio Kφ0
.

Finally, for angles 0 < φ0 < π
2

we can apply the same approach. Of course we can also apply the

condition

Kφ2
(ℓ2− r2) = Kφ1

(ℓ1− r1)

for φ1 < φ2 <
π
2
.

88 Chapter 3 Online searching for objects

-0.5

0

Y

-0.5 0.5X

Figure 3.25: Curves (X(φ),Y (φ)) depending from φ and A.

Not that this will also result in a continuous extension of the curves of Figure 3.25. The problem is

that these curve parts will not fulfil the condition Equation 3.9 because Kφ1
< Kφ2

holds. Therefore we

just insert the fixed ratio
√

2 which we would like to achieve at angle π
2
. The factor

√
2 dominates all Kφ.

By the same arguments as before it is sufficient to guarantee

w≤min{
√

2(ℓ1− ℓ2) ,
√

2(r1− r2)}

for any small piece of our curve.

Again we would not prefer one side and set ℓ1− ℓ2 = r1− r2. This means that we are moving on the

current angular bisector and call this startegy CAB (Current Angular Bisector); see also [IKL97, LOS96].

The analysis is also prenseted in [IKL99] oder [Lan00]. Note that if we apply the factor
√

2 for the angles

above π
2

for the path w we will also define a curve but the above path length property for w does not hold.

t

s

Figure 3.26: An example of the application of WCA.

Algorithm 3.1 summarizes the strategy, Figure 3.26 shows an example of its application. Altogether, the

following result holds:

Theorem 3.18 (Icking, Klein, Langetepe, Schuierer, Semrau, 1999)

Searching for the target t inside an unknown street polygon can be performed by an optimal
√

2 compet-

itive strategy. [IKL99, SS99, IKL+04]

3.3 Searching in street polygons 89

We have implemented the optimal strategy under the name “WCA” (Worst-Case-Aware), an applet

can be found here:

http://www.geometrylab.de/

Algorithm 3.1 Searching for the target of a street.

While target t is not visible:

• Compute extreme reflex vertices vℓ and vr.

• FIf only on exist, move toward it.

• Otherwise repeat:

– If a new reflex vertex v′ℓ or v′r is detected: Replace vℓ or vr by v′ℓ or v′r, respectively.

– Let φ be the current opening angle w.r.t. vℓ and vr.

– If φ≤ π
2
: Follow the current angular bisector

– If φ > π
2
: Follow the curve represented by X(φ) and Y (φ) with the current value A.

• Until either vℓ or vr is fully explored. Move to the vertex on the opposite side.

Move to the target t.

90 Chapter 3 Online searching for objects

3.4 Optimal search paths

We now consider the problem of searching for a goal in more general environments such as polygons

(with and without holes) graphs or trees. We consider the online and offline version. In the offline version

the environment is known, the goal remains unknown. In any case a search path has to visit or see all

possible goals of the given environment. Therefore any search path is also an exploration path for all

goals.

If the agent has a vision system, for any goal t there will be a first point on the search path where

t gets visible. After reaching this point the agent can move to t along the shortest path. The agent will

only use this last path, if t is the goal. In this sense the search path itself does not visit the goals, it only

sees any goal. On the contrary, if the agent has no vision, the search path has to visit any possible goal.

In the online version of the problem, additionally the agent has to gain more information about the

enviroment for future computation. We have already seen that a general constant competitive search

strategy does not exists for all groups of environments. For example, searching for the goal among

m fixed corridors with a cave at distance 1 at the end of each corridor, results in a search path of length

2m−1 whereas the shortest path to the last seen point is 1. Since m can go to infinity, there is no constant

C for the ratio. On the other hand for the fixed configuration of m corridors (m is fixed) no other strategy

than visiting all caves successively has a better ratio. This means that there is a large ratio for the last

point visited against the shortest path, but any strategy has this large ratio. Therefore for a comparisons

between good or bad search paths we just compare a path to the worst case ratio that any strategy has to

cope with.

The following definition is made for arbitrary environments E . For trees and graphs G = (V,E) we

consider two different variants w.r.t. the goal set. In the vertex search variant, the goals can only be

located at the vertices of G. The agent need not necessarily visit all edges. In the geometric search

variant, the goal can be located everywhere on the graph. Any search path has to visit all edges and

vertices.

For the general definition we introduce the goal set G ⊆ E . For a graph G = (V,E) and the vertex

search problem we have G =V , and G =V ∪E for the geometric search.

p′

s

π

p

sp(s, p)

Figure 3.27: A search path π in a simple polygon. The point p′ on π, is the first point on π such that p is seen

from π.

Definition 3.19 Let E be an environment, G ⊆ E a goal set and s a point inside E . A search path

π with start point s is a path in E , such that π starts in s and detects any point of G at least once. The

performance of the search path (denoted as search ratio) is defined by4

SR(π) := max
p∈G

|πp′
s |+ |p′p|
|sp(s, p)| ,

4πStrat
b
a denotes the portion of πStrat from a to b, sp(a,b) denotes the shortest path from a to b in E .

3.4 Optimal search paths 91

where p′ denotes the first point along π, such that p is detected from π; compare Figure 3.27. An optimal

search path πopt is a search path for E and G with minimal search ratio over all search paths in E .

For agent without visiom we have p′ = p for all points of G from E . The performance is given by:

SR(π) = max
p∈G

|πp
s |

|sp(s, p)| .

For some environments, it is known that the computation of the optimal search path is an NP-hart

problem, i.e. for graphs [KPY96]. For some other environments it is even not clear how the optimal

search path can be computed. Computing an optimal search path is a difficult task, therefore we are

looking for good and easy to compute approximations. We would also like to approximate the optimal

search path in the online version, i.e., we are looking for a constant CS, such that for any environment we

guarantee

SR(πonl)≤CS ·SR(πopt).

(i)

rm r1

r2

r3

. . .

(ii)

Figure 3.28: (i) m ray, (ii) m segments of different length.

At first place the optimal search path is computed for the offline version and can be handled as a com-

parison measure for the online version. If the offline optimal search path is not known, any online

approximation is also an offline approximation. Let us consider some examples:

1. If we are searching for a goal on m rays, that emanate from a common start point s, the online

and the offline version coincidence. We do not have more information in the offline version.. The

search strategy that visits ray (i mod m) with depth
(

m
m−1

)i
in the i-the step has the best competitve

ratio among all possible strategies. Therefore trivially this is also the optimal search path. This

means we have an approximation of the search ratio by factor CS = 1.

2. If we slightly relax the above example and replace the m rays by segments of different length

r1,r2, . . . ,rm as show in Figure 3.28, the problem of computing the optimal search path is still

unknown for the offline case. We have to compute the optimal competitive strategy in the offline

version. Approximations are possible by applying and adjusting the optimal competitive strategy

of the ray version (all ri = ∞).

3. In case of a tree environment the optimal search path for the vertex search can be computed in

exponential time, when the tree is given. We consider any permutation of the vertex set and

calculate the search ratio of the corresponding path. So we will find the best search path.

4. For the geometric search in trees we cannot apply the above (example 3) strategy since the goal

might be located along an edge. Example 2 is a special case of the geometric search version on

general trees, therefore the optimal offline search path is still unknown also for general trees in this

case.

92 Chapter 3 Online searching for objects

Algorithm 3.2 Searchpath by doubling exploration depth

• Let Explonl(d) be a competitive (online) strategy for the exploration of an environment up to depth

d. The strategy finally returns to the start.

• Successivly explore environment E by increasing depth, applying Explonl(2
i) for i = 1,2, . . . from

start point s.

Some of the above example cry for an approximation of the search ratio. The same holds for the

online version. The general idea for an approximation is as follows. For the given environment we

successively apply a constant competitive (online or offline) exploration strategies with increasing depth

d = 2i in analogy to the doubling heuristic used by searching for the door along a wall (doubling heuristic;

see Algorithm 3.2). Let Explonl denote a competitive online strategy that explores the environment and

returns to the start. Let Explonl(d) denote a sub-strategy that performs an exploration restricted to all

goals in the (possibly larger) environment that are no more than distance d away from the start. Explopt

and Explopt(d) denote the corresponding offline strategies for these problems. Furthermore, πExplonl
etc.

denote the corresponding paths.

Lemma 3.20 Let E be an environment, such that an agent without vision system is searching for a goal.

Let Explonl(d) be a C-competitive strategy that explores E up to distance d. By the use of the doubling

heuristic (Algorithm 3.2) we achieve a 4C-approximation of the optimal search ratio.

————————————————————

Proof. Explonl(d) is competitive, which means that there is a constant C such that for all enviroments E
we have

|πExplonl(d)
| ≤C · |πExplopt(d)

| . (3.14)

Also the optimal search path πopt finally visits all points with distance d. Let last(d) be the last point

at distance d from s that is detected (and visited) by πopt. The performance of this point is
|πopt

last(d)
s

|
d

.

This is a lower bound of the search ratio, the general performance of πopt cannot be better than the

performance ratio in last(d). Therefore we give the following lower bound:

SR(πopt)≥
|πopt

last(d)
s

|
d

. (3.15)

The optimal search path πopt applied from s to last(d) explores all goals at depth d and πopt
last(d)
s

is

an exploration path for depth d. If we return from last(d) to the start s by the shortest path of length d,

we obtain an exploration tour that returns to the start. This overall path is not shorter that the optimal

depth d restricted exploration tour (with return to s), we conclude

|πExplopt(d)
| ≤ |πopt

last(d)
s

|+d. (3.16)

From Equation 3.15 and Equation 3.16 we have

|πExplopt(d)
| ≤ d · (SR(πopt)+1). (3.17)

The strategy applies Explonl(d) with increasing exploration depth d = 20, 21, 22, . . . The worst case

for a ratio is attained, if we muss a goal with distance 2 j + ε in the round for exploration depth d = 2 j

3.4 Optimal search paths 93

and detect and visit this point almost at the end of the round with exploration depth d = 2 j+1. This gives

a worst case search ratio for each round by

SR(π) ≤

j+1

∑
i=1

|πExplonl(2
i)|

2 j + ε

≤
(3.14)

C

2 j

j+1

∑
i=1

|πExplopt(2
i)|

≤
(3.17)

C

2 j

j+1

∑
i=1

2i · (SR(πopt)+1)

≤ C ·
(

2 j+2−1

2 j

)

· (SR(πopt)+1)≤ 4C · (SR(πopt)+1).

2

For trees we have an optimal exploration strategy for any d with a ratio of C = 1 by DFS:

Corollary 3.21 (Koutsoupias, Papadimitriou, Yannakakis, 1996)

For any tree we can approximate the optimal search ratio by a factor of 4.

[KPY96]

An interesting result, because the optimal search path and the optimal search ratio is unknown.

For other environments, the main problem is finding competitive strategies for the depth restricted

exploration. For general graphs G=(V,E) we have introduced CFS-Algorithm in Section 1.5 on page 31.

This algorithm can be used for depth restricted exploration for depth r := d. There is a problem with

this strategy, since we use a rope of length (1+α)d and guarantee a competitive factor of 4+ 8
α , we

guarantee the exploration only for depth d.

Since we explore the graph with rope length (1+α)d it might happen that also parts of the graph

with distance larger than d will be explored. In the offline optimal exploration path such parts will never

be visited. The workaround for this problems is as follows. We compare the restricted depth strategy

with for depth d (that partially visits depth βd) to the optimal offline exploration with depth βd. In this

case we are on the safe side. In the case of CFS we have β = 1+α. Also the comparison ratio might

depend on β. We make use of a ratio Cβ such that Explonl(d) ≤Cβ ·Explopt(βd) holds. For the CFS we

have Cβ = 4+ 8
α .

Theorem 3.22 (Fleischer, Kamphans, Klein, Langetepe, Trippen, 2003)

Let E be an environment where an agent without vision system is searching for a target. Let Explonl(d)
be strategy for the depth restricted online exploration of E with Explonl(d) ≤Cβ ·Explopt(βd). We can

search in E by the doubling heuristic (Algorithm 3.2) and attain a eine 4βCβ-approximation of the

optimal search path and search ratio. [FKK+04]

Proof. In pure analogy to the proof of Lemma 3.20, only changing the version of Equation 3.14. 2

Corollary 3.23 For general graphs and online geometric search we can approximate the optimal search

ratio by a factor of 4(1+α)(4+ 8
α).

In the above version without vision we always guaranteed that the last point, last(d), detected at

distance d is also exactly visited at this moment in time. For an agent with a vision system it might

happen that the search paths visits a point last(d) from which the last point at distance d is detected and

seen but last(d) has not distance d to the start.

We can no longer conclude |sp(s, last(d))| ≤ d, which was required for the bound Equation 3.15.

Fortunately, for the agent with vision system we can at least guarantee that |sp(s, last(d))| ≤ |πopt
last(d)
s

|
holds. For moving back to the start from last(d) we can use the same path back.

94 Chapter 3 Online searching for objects

This gives a different lower bound for the optimal search ratio against the optimal offline exploration

tour, which is:

SR(πopt)≥
|πopt

last(d)
s

|
d

≥
|πExplopt(d)

|
2d

⇐⇒ |πExplopt(d)
| ≤ 2d ·SR(πopt).

Altogether we attain a factor of

j+1

∑
i=1

|πExplonl(2
i)|

2 j
≤ Cβ ·

j+1

∑
i=1

|πExplopt(β2i)|

2 j
≤ 2Cβ ·

j+1

∑
i=1

β2i SR(πopt)

2 j

≤ 8βCβ ·SR(πopt) .

Theorem 3.24 Let E be an environment where an agent with vision system is searching for a tar-

get. Let Explonl(d) be a strategy for the depth restricted online exploration of E with Explonl(d) ≤
Cβ · Explopt(βd). We can search in E by the doubling heuristik (Algorithm 3.2) and attain a 8βCβ-

approximation of the optimal search path and search ratio. [FKK+04]

With this general framework we can approximate optimal search path for polygons also in an online

fashion. The main task is the design of exploration strategies which will be the subject of the next section.

For the negative side we will now show some examples where an agent (without a vision system)

cannot approximate the offline optimal search path with a constant factor in the online version. Lower

bounds are achieved by counter examples. For some graph configuration we show that the search ratio is

constant (the competitive ratio is small) whereas any online strategy can be forced to make arbitrary large

detours against the shortest path to some goals. In comparison Corollary 3.23 for the geometric search

has used the property that the CFS Algorithm has running time of (4+ 8/α)|E(d)| for depth restricted

exploration. If the goal set is restricted to the vertices, the result will not help us anymore.

Figure 3.29: The optimal search path for goal set V cannot be approximated by a constant factor for (i) planar

graphs with multiple edges and (ii) general graphs without multiple edges.

3.4 Optimal search paths 95

Theorem 3.25 For the following graph configuration we can show that otimal offline search path cannot

be approximated by an online search startegy with a constant factor.

1. Planar graphs G = (V,E) with multiple edges and goal set V .

2. General graphs G = (V,E) even without multiple edges and goal set V .

3. Directed graphs G = (V,E) with goal set E ∪V.

Exercise 21 Show that for directed graphs G = (V,E) with goal set E ∪V a constant approximation of

the optimal search path and search ratio is not possible.

Exercise 22 Consider planar graphs G = (V,E) with goal set V . Does a constant approximation of the

optimal search path and search ratio exist?

Proof.

1. In Figure 3.29(i) the optimal search path visits vertices v and t with search ratio 1. Any online

strategy will be forced to visit all multiple edges before t is visited. This gives a ratio of k
2

for

arbitrary k.

2. In Figure 3.29(ii) the optimal search path visit the satellites of the k-clique from s in 3k steps. The

distance from s to the clique is also k. This gives a search ratio of at most 4. An online strategy

will be forced to visit all inner edges first, before the satellites will be visited. Therfore Ω(k2) steps

will be required and the search ratio is Ω(k).

2

The next paragraph will handle exploration strategies by an agent with a vision system. An analogous

negative result (no constant competitive search path approximation) will be achieved for polygons with

obstacles (or holes).

Interestingly, for all negative examples, there is already no constant competitive online exploration

strategy for the corresponding goal set. This is extended to the negative result for the search path approx-

imation. Altogether, the conjecture is that both statements are equivalent in general

Already proved: ∃ constant-competitive, (depth restricted) exploration strategy ⇒ ∃ online search

strategy with constant search ratio approximation.

Conjecture:
/
∃ constant-competitive exploration strategy and ∃ ’extentable’ lower bound⇒

/
∃ online

search strategy competitive against search ratio.

An extension trick for the lower bound can be seen in Figure 3.29(ii), the path to the k-clique was

extended such that the search ratio of the optimal search path is constant. A similar idea is applied for

polygons with holes; see Figure 4.22.

96 Chapter 3 Online searching for objects

Chapter 4

Exploration in polygons

We would like to consider the exploration task for polygons by an agent equipped with a vision system.

The results can be applied to the framework of the preceding section. We are searching for a short path

that sees all points in the polygon at least once. For a simple polygon the overall shortest such paths can

be computed in polynomial time, if the polygon is given. There are also online algorithms that explores

an a priori unknown simple polygon by a constant competitive strategy in comparison to the shortest

offline path. For polygons with obstacles (holes) no such algorithms exist.

4.1 Simple polygons

A simple polygons is enclosed by a simple polygonal chain without self intersections. In the competitive

sense we compare online exploration strategies with offline strategies.

The problem of computing the shortest round trip that sees all points in the polygon was introduced

by 1986 by Chin and Ntafos as the Shortest Watchman problem; see [CN86]. Since then many authors

have considered the Shortest Watchman Route (SWR) problem, sone of which have been erroneous.

Other have been improved in the running time. Currently, it is meant to be common sense that the

following result gives the best algorithm.

Theorem 4.1 (Dror, Efrat, Lubiw, Mitchell, 2003)

For a simple polygon with n vertices and a start point s, there is an algorithm that computes the Shortest

Watchman Route in time O(n3 logn). [DELM03]

First, we consider simple polygons and within this class of polygons special subclasses; see Fig-

ure 4.1. Polygons of these classes allow efficient computations.

(i) (ii) (iii)

Figure 4.1: (i) X–monotone polygon, (ii) non–monotone polygon, (iii) rectlinear polygon.

Definition 4.2 A simple polygon P is denoted as monotone, if there exists a line ℓ, such that for any

line l′ orthogonal to l the intersection P∩ l′ is path-connected. This means that the intersection P∩ l′

is a single segment, a point or empty. If ℓ is in parallel to the Y -axis, the polygon P is denotde as y–

monotone.

A simple polygon P is denoted as rectilinear, if any inner angle is either of 90◦ or of 270◦.

98 Chapter 4 Exploration in polygons

The most simple case for the computation of a SWR is given for monotone and rectilinear polygons:

Theorem 4.3 (Chin, Ntafos, 1986)

For a rectilinear and monotone polygon, the SWR can be computed in O(n) time. [CN86, CN88]

Exercise 23 Present a linear time algorithm for the proof of the above Theorem.

s

c1

c3

c6

c5

c2

c4

SWR

Figure 4.2: A polygon and necessary cuts (dotted), essential cuts (dashed) and the Shortest Watchman Route.

(i) (ii)

s

Figure 4.3: (i) A “corner” situation: Several cuts intersect and in a row and a single cut intersects more than one

other cut. (ii) A polygon and its SWR.

In general, for the computation of the SWR we can concentrate on discrete parts of the polygon. It

suffices to visit the essential cuts, defined as follows. The invisible parts of the polygons lie behind reflex

vertices, i.e., vertices with inner angle larger than π.

Definition 4.4 Consider the extension of a an edge of a reflex vertex that points into the inner part of

the polygon until it hits the boundary. Such segments are denoted as cuts. For the two cuts starting at a

reflex vertex the cut emanating from the invisible edge (w.r.t. the start point) has to be crossed in order to

see both edges. These cuts are called necessary cuts. For a necessaryl cut ci let Pci
denote the sub-part

of the polygon P behind ci w.r.t. the start point. The agent has to move inside Pci
. A necessary cut ci

dominates a necessary cut c j if Pci
⊂ Pc j

holds. In this case any path from the start that visits Pci
visits

the larger polygon Pc j
first. A necessary cut ci that is not dominated by any other necessary cut is denoted

as an essential cut. It is clear that for the SWR it is sufficient to visit all essential cuts.

Necessary cuts that will be dominated will be explored on the path to the corresponding essential

cut. Figure 4.2 shows an example with necessary and essential cuts. Here c3 and c5 are not essential, any

path to c4 will visit the cuts. More precisely, c4 dominates c3 and c5. With the help of the cuts we can

formulate some structural properties:

4.2 Rectilinear polygons 99

(i) The SWR and any other exploration tour has to visit all essential cuts. The set of essential cuts is

the smallest set of cuts that has to be visited for seeing the whole polygon.

(ii) If the essential cuts do not intersect, they have to be visited in their order along the boundary. In

this case from the SWR the cuts will be visited by specular reflection. The incoming angle for the

visit of each cut is the same as the outgoing angle.

(iii) If some essential cuts intersect in a row, we call this a “corner” situation. In this case it might

happen that some cuts are just passed by the SWR and are not visited by specular reflection; see

Figure 4.3. This makes the corner situation difficult.

For a polygon and a start point s we can order the cuts by the order they appear along the boundary,

independent from the position of the corresponding reflex vertex; see Figure 4.2. In the corner situation

the SWR need not visit the essential cuts in this order; see Figure 4.4.

Interestingly, the corresponding polygons Pci
are still visited in the order of the corresponding cuts.

In Figure 4.4 we have the visiting order P1,P2,P3,P4,P5,P6. This is meant as follows.

Although, we first enter P3 the SWR actually visits P1 and P2 at a single point first. By chance we are

also in P3 at this point, visit P3 immediately and the order is maintained in this sense. Pre-visits do not

count. This means that the task is: Computed the shortest tour that visits the polygons Pci
by the order

along the boundary.

4.2 Rectilinear polygons

We will pick up the above idea later on. First we consider the simple case of a rectilinear polygon.

In a rectilinear polygon everything is less complicated. We do not have complicated corner situations.

Essential cuts have successive intersections for max three orthogonal cuts; see Figure 4.4. We conclude.

1

2

3

4 5

6

P3

Figure 4.4: In a corner situation the SWR visits the polygons Pci
(here Pi) by the order of the corresponding

essential cuts along the boundary. In rectilinear polygon essential cuts will never be passed.

Lemma 4.5 For a rectlinear polygon the SWR visits the essential cuts by the order along the boundary.

Proof. For the rectinlinear case a corner situation can occur with maximal

three cuts, where the first and the last one run run in parallel and do not

intersect. Moving into the corresponding polygons Pci
gives a detour. It

is needless to pass a cut in order to reach another cut. Therefore all cuts

will be visited one after the other.

Assume that the visits do not follow the order along the boundary. In this

case the SWR R will have an intersection somewhere; see the Figure. We can simply change the order

c1

s

x

c3

c2

locally in order to obtain R′ that runs from s c1,x,c2,c3,x to s. This is also a tour that has the same

100 Chapter 4 Exploration in polygons

property. In the vicinity of the intersection x we can even locally (and globally) improve the tour by

some shortcuts. 2

Lemma 4.5 gives the key-idea for the computation of the SWR:

Theorem 4.6 (Chin, Ntafos, 1986)

The Shortest Watchman Route in a simple, rectilinear polygon can be computed in O(n) time. [CN86,

CN88]

Proof. Algorithm 4.1 computes the SWR in a rectilinear polygon, Figure 4.5 shows an example.

The essential cuts can be commputed in O(n) time (exercise left to the reader). It has to be shown

that P′′, has no more than O(n) edges or triangles. All other running times stem from standard offline

algorithms for polygons. We consider dual graph, T ∗, of the triangulation. Successively visiting the

cuts along the corresponding triangles is simply Depth-First runs through T ∗. Any edge of T ∗ is visited

exactly twice. This means that also any triangle occur only twice in P′′, the number of triangles and

edges in P′′ is in O(n). 2

Exercise 24 Show that the essential cuts in a rectilinear polygon of n vertices can be computed in O(n)
time.

Algorithm 4.1 Shortest Watchman Route for rectilinear polygons

• Compute the essential cuts c1, . . . ,ck and order them along the boundary from s. O(n)

• Cut of the corresponding sub-polygons Pci
behind the cuts. This gives a polygon P′. Some of the

essential cuts get smaller. O(n)

• Compute a triangulation for P′. O(n)

• Compute a chain of triangles P′′ by the “Roll–Out” of P′: O(n):

– Let P(1) be the relevant triangles of P′ along the path in the dual graph of the triangulation,

T ∗ , from s to c1.

– For any essential cut ci, i= 2, . . . ,k: Extend P(i−1) to P(i) by the chain of the relevant triangles

along the boundary of P′ on the path from ci−1 to ci and reflected at the ci−1.

– Extend P(k) to P′′ as above by the relevant triangles on the path from ck to s and by reflection

on ck. There will be a copy s′ of s.

• P′′ is a sequence of triangles. Compute the shortest path π from s to s′ in P′′. O(n)

• The SWR can be build by mirroring back the line segments of the path at the cuts ci.

Algorithm 4.1 can be applied to any polygon in the same way, if any essential cut of the polygon

intersect with exactly one other essential cut. In this case Lemma 4.5 holds. In general polygons this

will not be the case. Many essential cuts can intersect in a row with multiple intersections of a single cut

with others. We call such situations a “corner” situation. In a corner, the order of the visits of the cuts is

non-trivial.

First, we would like to argue, that the above algorithm can be easily made depth-restricted. For this

we only have to restrict the set of essential cuts. An essential cut blocks the visibility of points closely

behind the reflex vertex of the cut. We consider a non-visible point that has the closest distance to the

start s. In principle this point is arbitrary close to the reflex vertex. So the distance to the reflex vertex

gives the distance to the cut. In Figure 4.6(i) the rightmost essential cut has distance l > d.

We would like to see all points in P with distance less than or equal to d from s. Let P(d) denote this

part of P. Obviously, it is sufficient to visit all essential cuts that has a distance ≤ d. > d to the start s;

see Figure 4.6(ii). We apply the same algorithm.

4.2 Rectilinear polygons 101

(v) Shortest Watchman Route

(iii) Triangulation

c2

(iv) Roll-Out und k”urzester Weg

s s

s

s

s′

s

c2

c3

c1

c3

c1

c1

c2

c3

(i) Wesentliche Cuts (ii) ”Au”seres abschneiden

Figure 4.5: Computing the SWR in a rectinlinear polygon.

For simple, rectilinear polygons we conclude: ExplOFF(d) = Explopt(d). This means that for the

offline case we have β = 1 and Cβ = 1 for the exploration of P(d) and the application of Theorem 3.24

gives an 8-approximation of the optimal search ratio. Suchpfades.

SWR(d)
SWRs s

> d

(i) (ii)

Figure 4.6: Computation of the SWR for all points with distance≤ d from s in a rectilinear polygon. It is sufficient

to ignore all cuts of distance > d.

In the online version of the problem, the poygon is a priori not known. Nevertheless, we can design an

efficient online algorithm. There are no corner situations and we can visit the cuts of the reflex vertices by

the Greedy-Algorithm 4.2; see also Figure 4.7. Starting from s at the boundary we successively expand

the visible part of the boundary and always approach the next reflex vertex by a move orthogonal to its

cut. This gives an L1-optimal exploration path. We have the following result:

Theorem 4.7 (Deng, Kameda und Papadimitriou, 1991)

A simple, rectilinear polygon can be explored online optimally w.r.t. the L1-metric and with a competitive

ratio of
√

2 w.r.t. the L2-metric 1. [DKP98]

1For the L1-metric or Manhatten-metric the distance between two points p=(px, py) and q=(qx,qy) is defined by d(p,q) :=

|px−qx|+ |py−qy|; in the L2- or Euclidean metric we have d(p,q) =
√

(px−qx)2 +(py−qy)2 .

102 Chapter 4 Exploration in polygons

Algorithm 4.2 Online exploration of a rectlilinear polygon

while Polygon is not fully explored do

Consider the next reflex vertex along the boundary in cw order.

Move orthogonally to the corresponding cut.

end while

π

SWR

s

Figure 4.7: Path of the online heuristic and the SWR w.r.t. the L2-metric in a rectilinear polygon.

Proof. We give a sketch of the proof. The Greedy-exploration approach give an optimal L1-path, since

the algorithm successively creates locally optimal L1-paths. In the first step the first cut will be visited

orthogonally by an optimal L1-paths. Assume that we are already along an optimal L1-path and have

visited a set of cuts in this fashion. The next cut is again visited orthogonally on the shortest L1-path. By

induction the agent moves along an overall shortest L1-path for visiting the necessary cuts.

We still have to move back. For this we simply assume that at the start point s there is an artificial

necessary cut. Also this last cut will be visited by an optimal L1-path, which gives an overall optimal L1

round trip.

For the comparison to the optimal L2-SWR, we use the following sketch. Also the L2-SWR visits the

essential cuts in the order along the boundary. We shift the L1-path to the outer boundary such that the

L2 SWR path is included and the L1-path still has the same length. For any two point of a segment of the

L2-SWR there is an optimal L1-path which can be considered to consist of two segments, we only have

to check detours of triangles; see Figure 4.9.

Thus, we consider a single triangle and by scaling we can argue that we have to consider the maxi-

mum of the f (x,y) = x+y for x2+y2 = 1. This means that f (y) = y+
√

1− y2 has to be maximized. We

have f ′(y) = 1− y√
1−y2

and the f ′ gets 0 for ymax =
1√
2
. This is a maximum of f and we have xmax =

1√
2

and f (xmax,ymax) =
√

2. 2

π

s

SWR

π

SWR

s

Figure 4.8: Shifting an L1-optimal path, such that the L2-SWR is inside. The analysis of the detour for triangles is

sufficient.

4.3 General simple polygons 103

1

y

x

Figure 4.9: The worst-case detour in a triangle is
√

2.

For the online variant we can restrict the algorithm to explore the polygon up to depth d. As before

we ignore all cuts where the reflex vertex has distance > d. The
√

2-approximation against the SWR up

to depth d remains valid. Therefore for the application of Theorem 3.24 we conclude β = 1 and Cβ = 1

and attain a 8
√

2-approximation of the search ratio and the optimal search path.

Corollary 4.8 The optimal search path in a simple, rectilinear can be approximated within a factor of

8 in the offline case and within a factor of 8
√

2 in the online case.

4.3 General simple polygons

As in the previous section we first concentrate on the offline computation of a SWR in a simple polygon.

As already shown in Figure 4.4 the sub-polygons Pci
of the essential cuts will be visited in the order along

the boundary. More generally we extract the following general computation task, which finally ends in

Theorem 4.1. A touring-a-sequence-of-polygons gives a generalization of the SWR computation.

Definition 4.9

(i) In the simple Touring Polygon Problem (TPP) version a sequence of simple, convex and disjoint

polygons P1,P2, . . . ,Pk with n edges in total is given. Furthermore, a start point s and a target point

t is fixed. We are searching for the shortest path that starts in s, visits the polygons Pi in the order

given by the index i and ends in t.

(ii) In the general version of the TPP, the path between two successive polygons Pi und Pi+1 (i =
0, . . . ,k; P0 := s;Pk+1 := t) can be forces to run in a so-called fence-polygon Fi. The fence Fi

is a simple polygon that contain Pi and Pi+1. Additionally, the polygons might overlap, i.e., the

intersection of Pi and Pj need not be empty. In the presence of a fence for polygons Pi and Pi+1,

it is allowed that only the boundary parts of Pi and Pi+1 that do not belong to the boundary of the

fence form a convex chain. We call this part the facade of Pi or Pi+1, respectively. More precisely

facade(Pi) := ∂Pi \∂Fi−1.

t

π

P2

P1

P3

P4

s

Figure 4.10: An example for the simple version of the Touring Polygon Problem.

The interpretaion of the TPP is as follows: It can happen that for j < i a polygon Polygon Pi has

been visited by chance before polygon Pj is visited, the first visit will be ignored, the polygon Pi has

to be visited again. More precisely the visit of Pi is valid, if the polygons P1, . . .Pi−1 have been visited

104 Chapter 4 Exploration in polygons

P3

P4

P1

P2

s

P5

F3

π

t

Figure 4.11: An example for the general Touring Polygon Problem.

in this order before, Figure 4.10 shows an example for the simple TPP configuration and Figure 4.11

examplifies the general case. The dashed part of the boundary of P4 is the facade of P4. Note, that P5 was

visited before P4 is entered, we “register” the visit of P5 after P4 was visited

Theorem 4.10 (Dror, Efrat, Lubiw, Mitchell, 2003)

For the general TPP with k polygons, k+1 fences and n edges in total for all polygons and fences there

is an algorithm that computes a query structure for the TPP in O(k2n logn) time. The query structure

has a complexity of O(kn). For a fixed start point s and for any query target point t the shortest TPP path

can be computed in k”urzeste TPP-Pfad Zeit O(k log n+m) where m denotes the number of segments of

the shortest TPP path. [DELM03]

Now let us come back to our initial SWR problem. We now sketch the proof of Theorem 4.1.

Proof. Let us assume that P and a start point s on the boundary is given. We construct a TPP input

(P1, . . . ,Pk,F1, . . . ,Fk,s, t) as follows. Let ci be the i-th essential cut of P along the boundary of P and

Pci
the corresponding sub-polygon. We set Pi := Pci

. Any fence will be the polygon P itself, which is

Fi := P. The facades of any Fi is given by the cut ci. Finally, we set t := s for returning to the start. The

SWR is the shortest path that starts at s visits the polygons Pi in the given order inside the polygon P and

ends at s. The cuts ci build convex facades for the possibly non-convex polygons Pi. This gives exactly

the task in the corresponding TPP. The complexity of the facades is in O(1) and the complexity of the

fence is in O(n). We can have Ω(n) = k many polygons Pci
. The running time is in O(n3 logn). 2

s

SWR

π

Figure 4.12: A greedy-exploration of the reflex vertices is not competitive in a non-rectilinear polygon.

4.3 General simple polygons 105

s

ℓ
r

r

r

r

ℓ

r

ℓ

ℓ

rr

ℓ

SPT(P,s)

Figure 4.13: Polygon, Shortest Path Tree and examples for right and left reflex vertices.

Finally, we consider the online exploration of general simple polygons. The greedy approach for

rectilinear polygons explored the cuts of the reflex vertices in the order (of the vertices!) along the

boundary. Let us assume that in a general polygon we get some more information and all cuts are given.

If we explore the cuts in the order of the corresponding reflex vertices and construct the shortest (optimal)

path for this visiting order, the corresponding path can be arbitrarily large in comparison to the SWR of

the polygon. Figure 4.12 shows an example where the greedy approach with additional information does

not succeed w.r.t. a constant competitive approximation.

Figure 4.12 also shows that it makes sense to bundle the reflex vertices and subdivide them into cuts

that will be detected if the agent moves to the left and cuts that will be detected, if the agent moves to

the right. This is what the corresponding SWR does in principle. We would like to formalize this idea

by categorizing the reflex vertices correspondingly.

Definition 4.11 Let P be a simple polygon and s be a start point at the boundary of P. The Shortest

Path Tree, SPT(P,s), contains the shortest paths inside P that runs from s to the all vetices of P. The

SPT is the smallest set of segments that contains all the paths. W.r.t. the SPT a reflex vertex v of P is

denoted as a left vertex Ecke, if the SPT(P,s) makes a counter clockwise turn at v and right vertex, if

the SPT(P,s) makes a clockwise turn at v; see Figure 4.13. The interpretation is that w.r.t. the path from

s, v lies to the left or v lies to the right of the preceding vertex.

α

π

πopt

α

πopt

(i) (ii)

s
s

v
v

π

Figure 4.14: Looking around the corner in a competitive fashion.

Different from the rectilinear case we will not approach the reflex vertices orthogonally, we make

use of circular arcs. Consider Figure 4.14. The agent is located at s and detects the reflex vertex v. The

angle α for the cut is unknown because vertex v blocks the corresponding edge. Assume the agent moves

directly toward v. An adversary will choose a very large angle α — as in Figure 4.14(i) — such that an

106 Chapter 4 Exploration in polygons

arbitrary short path orthogonal to the cut is sufficient. In this sense the direct path to the vertex is not

competitive.

Therefore we explore the vertex (or its cut) by a half-circle starting at s around the midpoint of sv

and radius |sv|/2. For approaching the cut this gives a competitive ratio of at most π
2
. For the above

looking-around-a-corner problem the exploration by the half-circle is not the overall best strategy, as

will be shown in the next section. In comparison to the optimal corner strategy the half-circle strategy

can be easily analysed and has nice properties against the shortest path.

The half-circle exploration is not the overall best strategy for looking around a corner. A refined

analysis shows the following result:

Theorem 4.12 (Icking, Klein, Ma, 1993)

The problem of looking around a corner can be solved within an optimal competitive ratio of ≈ 1.212.

[IKM94]

We first formally show the competitive ratio of the half-circle strategy for detecting the cut and also

give a simple lower bound.

Theorem 4.13 The unknown cut of a reflex vertex in a simple polygon can be detected by a half-circle

strategy within a competitive ratio of π/2 against the shortest path to the cut. It can be shown that there

is no online strategy that explores any corner (visit the cut) within a ratio less than 2√
3
.

Proof. We consider the normalized version of the problem from Figure 4.15. For the offline optimal

solution either the vertex O will be visited directly or the cut will be approached orthogonally, the cut is

not know which is indicated by the unknown angle ϕ. for ϕ ∈ [0,π2] the orthogonal distance sinϕ gives

the optimal solution. For ϕ ∈ [π2,π] the shortest path to O of length 1 is optimal.

We compare the optimal solutions to the half-circle strategy for any ϕ. Until the half-circle finally

hits O at angle ϕ = π/2 (and therefore for all ϕ ∈ [π2,π]), the half-circle strategy has arc length ϕ for

any ϕ ∈ [0,π2]. For all possible cuts with angle ϕ ∈ [π2,π] we attain a ratio G(ϕ) = π/2

1
. For the case

ϕ ∈ [0,π2] we have H(ϕ) = ϕ
sinϕ . The first derivatives gives H ′(ϕ) = sinϕ−ϕcosϕ

sin2 ϕ
and by simple analysis

we have H ′(ϕ)> 0 for ϕ ∈ (0,π/2]. Therefore in both cases the ratio π
2

is the worst-case.

ϕ

1
2cosϕ

sinϕ

2ϕ

O

ϕ

W

Figure 4.15: The optimal path to the unknown cut either is given by the direct path to O of length 1 for ϕ ∈ [π2,π]
or is given by an orthogonal path of length sinϕ for ϕ ∈ [0,π2]. For the half-circle strategy the worst-case ratio is

attained at ϕ = π/2 with a ratio of π/2.

4.3 General simple polygons 107

For the lower bound we consider Figure 4.16. We provide a bit more information for the online

strategy. Either ϕ is exactly π
6

or ϕ = π
2
. In the first case the optimal path has length sinπ/6 and in the

second case the optimal path has length 1.

1
X

π
6

π
6

W

O

sinπ/6

√
3

3

Figure 4.16: The lower bound construction gives a ratio of 2√
3
. If the strategy visits the π/6-cut to the right to X ,

the π/6-cut is the given cut. If the strategy visits the π/6-cut to the left to X , the π/2-cut is the given cut. Both

cases gives a ratio of 2√
3
.

Any strategy will visit the π/6-cut somewhere (may be also at the end at point O). Therefore we

consider the isosceles triangle with ground length OW and two angles of size π/6. This means the one

segment if the triangle runs in parallel with the π/6. Consider the vertex X of the triangle on the π/6-cut.

Either an online strategy visits the π/6-cut to the left or to the right of X . Both cases might include that

exactly X is visited.

In the first case (visit to the left of X), the adversary present the π/2-cut as the true cut and the agent

now moves toward O. The optimal path has length 1, whereas the strategy runs at least 2 · 1
2cos π/6

=

2 ·
√

3
3

= 2√
3
. In the latter case the (visit to the right of X), the adversary present the π/6-cut as the true

cut, the ratio is at least
1√
3

sinπ/6
= 2√

3
. In both situations the same worst-case ratio is attained. 2

We will now sketch the ideas for the competitive only exploration of a general polygon by a recursive

subdivision of the reflex vertices in groups of left and right vertices and by a consequent successive

exploration of the groups by half-circles.

By Algorithm 4.3 we explore a single right vertex. The strategy manages two lists of vertices. The

TargetList contains right vertices that have been detected (but not explored) ordered in ccw-order along

the boundary. Right vertices, that will be detected by ExploreRightVertex and that do not lie behind left

vertices of the SPT, will be inserted into TargetList during the execution of ExploreRightVertex. It might

happen that the goal vertex Target changes during the execution. In this sense ExploreRightVertex does

not only explore a single right vertex, the target changes. The exploration is restricted to a set of right

vertices that subsequently lie along the boundary such that no left reflex vertex occurs in between. The

goal is to explore all vertices of the sequence. We consider the exploration as shown in Figure 4.17 and

exemplify the usage of Algorithm 4.3.

The agent starts in s. We initialize BasePoint by s and TargetList contains only r1. The target r1 is

visible. Back is also s. We follow the half-circle arc(s,r1) until the next right vertex r2 is detected at e1

(the first event). Since r2 does not lie behind a left vertex and lies in ccw-order behind r1 we insert r2

into the target list TargetList. In cw-order r2 lies in front of r1 and r2 is the first element of the target

list. Therefore there is an update of Target and the agent now moves along the half-circle arc(s,r2). At

108 Chapter 4 Exploration in polygons

Algorithm 4.3 Exploration of a right vertex.

ExploreRightVertex(TargetList, ToDoList):

BasePoint := current position of the agent.

Target := first vertex of TargetList.

while Target is no longer visible do

Move along shortest path from BasePoint toward Target.

end while

Back := last polygon vertex reached along the

shortest path from BasePoint to the current position.

while Target is not fully explored do

Move along halfcircle arc(Back,Target) in cw-order.

Update TargetList, ToDoList, Target, Back during the task.

// Special situations during the half-circle move:

if the boundary of P blocks the move then

Follow the boundary until the half-circle can be continued.

end if

if Target will get out of sight by a vertex then

Move toward Target to the vertex, that blocks the sight.

end if

end while

the second event e2 the visibility to the current target gets blocked by ℓ1, which is the second special

situation. The agent moves toward the target r2 to ℓ1. At ℓ1 we update Back := ℓ1, since we reached a

polygon vertex. Now we move along the arc arc(ℓ1,r2). Close behind ℓ1 the BasePoint s is no longer

visible and still Back := ℓ1 remains true. At event e3 the s gets visible again, we are no longer at a vertex

and we set Back := s. Note that the BasePoint will be s all the time. At event e4 the current Back point

s vanishes again, we set Back := r1 and run along the half-circle arc(r1,r2). At event e5 the next right

reflex vertex r3 in ccw-order is detected, inserted into TargetList and gets the new Target. Therefore we

move along the half-circle arc(ℓ1,r3) until at e6 the r1 (Back) gets out of sight and we set Back := r2

and continue with arc(r2,r3). This movement is blocked betweem e7 and e8 from the boundary where

the first special situation is used and the agent follows the boundary until picking up arc(r2,r3) again.

Finally, r3 is fully explored. The vertex r3 defines an essential cut that dominates the cuts of r1 and r2.

Since the current target Target is explored, the procedure Algorithm 4.3 ends. It might be the case that

TargetList still contains non-explored reflex vertices. In general the procedure Algorithm 4.3 is part the

procedure ExploreRightGroup that explores such a group of reflex vertices successively by Algorithm 4.3

with corresponding BasePoints.

Algorithm 4.4 Exploration of a group of right vertices.

ExploreRightGroup(TargetList, ToDoList):

StagePoint := current position of the agent.

ToDoList := /0

while TargetList is non-empty do

ExploreRightVertex(TargetList, ToDoList).

For the current cut, move along the point on the cut that has the shortest distance (in P) to the

StagePoint, update TargetList and ToDoList.

end while

Move along the shortest path (in P) back to StagePoint.

We exemplify ExploreRightGroup (Algorithm 4.4) and its interplay with ExploreRightVertex by Fig-

ure 4.18. Beginning at s as the current stage point and with the first single target r1 in the target list

4.3 General simple polygons 109

e7

e8

s

e5

e4

r2
e6

r3

r1

ℓ1

e2

e3

e1

arc(s,r1)

arc(s,r2)

arc(ℓ1,r2)

arc(s,r2)

arc(r1,r2)

arc(r1,r3)

arc(r2,r3)

Figure 4.17: Exploration of a right vertex.

e4

r1

r2

r3
r4

r5

r6e1

e2

e3

e5

s

Figure 4.18: Exploration of a group of right vertices.

we start ExploreRightVertex. Analogously, to the above description at event e1 the vertex r2 is detected

and arc(s,r2) is started. r2 is the new Target Since the vertices r6 and r3 which are detected during the

movement of arc(s,r2) up to e2 do not lie behind (in ccw-order) r2 they will not become new targets in

the procedure ExploreRightVertex. In the current target list TargetList r6 and r3 lie behind r2. In e2 the

current target vertex r2 is fully explored and ExploreRightVertex ends here. Fortunately, w.r.t. the current

Back point s the segment se2 is orthogonal to the cut of r2, the agent is located at the point on the cut

with the smallest distance back to the Back point.

Now in ExploreRightGroup the procedure ExploreRightVertex is called up again with r3,r6 in the

target list. This exploration ends at e3. The vertices r4 and r5 are detected (and inserted in the target list)

during the walk along arc(s,r3). Note that r6 is deleted during an update of the list. r6 was expored. The

vertices r4 and r5 do not lie behind r3 and therefore first r2 is fully explored and ExploreRightVertex ends

again.

In between the VARBack point has changed to r1. Now w.r.t. the cut of r3 at e3 the agent is not

located at a point on the cut of r3 that has the shortest distance to the stage point s (and also to the current

VARBack point). Therefore we move to such a point e4 along the cut of r3. This movement is part of the

ExploreRightGroup procedure. Now ExploreRightVertex is applied with target r4 and current back point

110 Chapter 4 Exploration in polygons

r1 so that the arc arc(r1,r4) is used until this procedure end at e5.

The current back point has changed to r6 and the ExploreRightGroup forces the agent to slip along

the cut of r4 to move to the point closest to r6 and s. The TargetList is updated in between and also r5 is

deleted out of TargetList. Now the TargetList is empty and in our case we return to the StagePoint which

is s in this case.

The procedure ExploreRightGroup is used in the frame procedure Algorithm 4.5. This procedure

builds up groups of left and right vertices which are explored in an alternating way. The usage of Ex-

ploreRightGroup goes into the depth in the sense that there is a list of stage points (StagePoint) (back

points on the shortest path back to s) stored in the ToDoList that will be used as starting points for the

procedure ExploreRightGroup. Analogous procedures for the exploration of left vertices and groups of

left reflex vertices will be used.

The main procedure starts with the exploration of a right group from the start and returns to the start.

After that all known left vertices are ordered along the boundary and the same group procedure is called

for the left vertices from the start. Then the recursion starts by moving to the stage points and recall the

procedures from there.

Algorithm 4.5 Exploration of simple polygons.

ExploreRightGroupRec(TargetList):

ExploreRightGroup(TargetList, ToDoList).

for all Vertex v in ToDoList do

Move along the shortest path to v.

NewTargetList := all detected left vertices,

which are successor of v in the SPT.

ExploreLeftGroupRec(NewTargetList).

end for

ExplorePolygon(P, s):

TargetList := right vertices visible from s, sorted in cw-order

along the boundary of P .

ExploreRightGroup(TargetList, ToDoList)

TargetList := detected left vertices, lying behind (in the SPT) the vertices

of ToDoList .

Additionally add all from s visible left vertices to TargetList.

Sort TargetList in ccw-order.

ExploreLeftGroupRec(TargetList).

Theorem 4.14 (Hoffmann, Icking, Klein, Kriegel, 1998)

The strategy PolyExplore explores an unknown simple polygon within a competitive ratio of 26.5 against

the SWR. [HIKK01]

The ratio of 26.5 might appear to be huge, in fact it is an improvement of the ratios 133 (Hoffmann

et al. [HIKK97]) or 2016 (Deng et al. [DKP91]) previously known. Indeed, the ratio is merely a result of

the analysis. The best known lower bound for the strategy was given by an example where the ratio is

roughly 5. The conjecture is that the ratio of the strategy is indeed close to 5, whereas a full proof can

only be given for 26.5.

The online and the offline strategies given above can be easily restricted to a depth d. As mentioned

before it suffices to ignore all reflex vertices with distance > d. This means that the approximation factors

of 26.5 and 1 remain valid for the depth-restricted case. Note that the SWR for depth d might leave P(d);
see Figure 4.19.

For the online case we can make use of β = 1 and Cβ = 26.5 for the exploration of P(d), in the offline

case we have β = 1 and Cβ = 1. Application of Theorem 3.24 gives the following result:

4.4 Polygons with holes 111

Corollary 4.15 The optimal search path and the optimal search ratio for general simple polygons can

be approximated offline within a ratio of 8 and online within a ratio of 212.

(i)

(4) (2)

(1)(3)
vrvℓ

P(d)

P′(d)

s

PolyOpt(d)

Figure 4.19: In this case SWR(d) leave the part P(d). PolyExplore keeps inside P(d).

4.4 Polygons with holes

In the previous section competitive strategies for the exploration of simple ploygons were presented. We

would like to show that in a scene with polygonal obstacles such results cannot be obtained. We consider

non-simple polygons which means that the polygon has holes (or obstacles) inside. These holes are non

interescting and they are given as simple polygons itself.

The task of exploring a polygon with holes is much more complicated. At the first place the compu-

tation of the SWR is NP-hard. There is a simple reduction of the TSP problem by placing small obstacles

around the corresponding point set. Furthermore, for simple polygons it can be shown that it suffices to

explore the boundary. More precisely, if the boundary of a simple polygon P was seen along an explo-

ration path, also any point inside P has been seen by the path. This is not true for polygons with holes as

depicted in Figure 4.20. The path π sees the boundary of all obstacles and the outer boundary, but there

is still a portion of the polygons that is not explored.

π

P
s

Figure 4.20: A polygon with holes. The path detects the full boundary but not all points inside P have been seen.

We can show that there is no strategy that explores any polygon with holes within a constant com-

petitive ratio against the shortest exploration path.

Theorem 4.16 (Albers, Kursawe, Schuierer, 1999)

Let A be an arbitrary online strategy for an agent with a vision system for the exploration of a polygon

P with holes. Let n denote the overall number of vertices of P. we have [AKS02]

|πA| ≥Ω(
√

n) · |πopt|.

112 Chapter 4 Exploration in polygons

πopt

Hi
Hi+1

s
Wi

rekursives Subproblem

Figure 4.21: The lower bound construction for the exporation of a polygon with holes and a sketch of the optimal

offline path πopt.

Proof. We recursively construct a polygonal scene as shown in Figure 4.21. The starting scene consists

of k+1 thin rectangles of length W = 2k and arbitrarily small height, called spikes, and k rectangles of

width 1 and height 1, the so-calles bases. The construction has height roughly H1 = k. The agent starts at

the lower left corner. Between a spike and a base there is an arbitrary thin corridor, so that the agent can

move inside and have a look behind the base. Behind one of the bases the situation appears recursively,

again with k spikes of length Wi = 2k− i and k bases of width 1. The overall height is Hi := 1
(2k)i−1 . The

agent does not know whether the next sub-problem has the bases on the left or on the right side.

The construction will be repeated k times with values Hi+1 =
Hi

2k
and Wi+1 =Wi−1 for i= 2, . . . ,k−1,

starting with H1 = k−1 und W1 = 2k. This means that we have k sub-problems, each nested behind the

base of a previous one (up to the starting problem). Altogether, we have k× (2k + 1) rectangles and

4k× (2k+1) = n edges, with k ∈ Omega(
√

n).
The strategy A has to see all points. In the first stage for finding the second block, the agent can

either look behind the k bases from the left by moving distance 2k-1 or moves to the right (distance 2k)

and then upwards. For both cases the next block will be presented at the last visit. In the first case the

next base rectangles are located to the left, in the latter case the next base rectangles are located to the

right. So the same situation occurs again. This means that the agent has to move at least k times distance

k which gives Ω(k2) in total. This means |πA| ∈Ω(k2).
The optimal offline strategy directly moves to the base where the next recursive sub-problem is

nested. Then the sub-problem is explored optimally with path length 2Hi. Finally, the agent has to move

to the right upper corner and moves back along the left side to look behind all bases; see Figure 4.21.

We have

|πopt| = 2W1 +2
k

∑
i=1

Hi

= 2W1 +2H1

k

∑
i=1

1

(2k)i−1

= 4k+2k

((
1
2k

)k−1
(

1
2k

)
−1

)

= 4k+2k





2k
(

1−
(

1
2k

)k
)

2k−1





≤ 8k

This gives a ratio of Ω(k) = Ω(
√

n) which gives the bound Ω(
√

n). 2

Finally, by a simple trick we show that also the optimal search path cannot be approximated within

a constant ration. The optimal search path for the above situation might decide to detect a point that has

distance 1 from the start after Ω(k) steps, therefore the search ratio might be k.

To avoid this situation we shift the start k steps away from the block construction as shown in Fig-

ure 4.22. Now any non-visible point has distance at least k. An optimal exploration path has length at

4.4 Polygons with holes 113

most 10k and gives a constant approximation of the search ratio (which is a constant). As shown above

any online strategy will detect the last point distance at most 4k away after at least Ω(k2) steps. Thus the

search ratio is in Ω(k).

Corollary 4.17 For polygons with holes there is no strategy that approximates the optimal search path

and the search ratio within by a constant factor.

t

2k

recursive subproblem

πopt

k

ss

k

s

O(k)
k

Figure 4.22: Shifting the start point away means that any invisible point has distance Θ(k), this gives a constant

search ratio for the best offline exploration path.

114 Chapter 4 Exploration in polygons

BIBLIOGRAPHY

Bibliography

[Ad80] H. Abelson and A. A. diSessa. Turtle Geometry. MIT Press, Cambridge, 1980.

[AFM00] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Approximation algorithms for lawn mowing

and milling. Comput. Geom. Theory Appl., 17:25–50, 2000.

[AG03] Steve Alpern and Shmuel Gal. The Theory of Search Games and Rendezvous. Kluwer

Academic Publications, 2003.

[AKS02] Susanne Albers, Klaus Kursawe, and Sven Schuierer. Exploring unknown environments

with obstacles. Algorithmica, 32:123–143, 2002.

[BRS94] Margrit Betke, Ronald L. Rivest, and Mona Singh. Piecemeal learning of an unknown en-

vironment. Technical Report A.I. Memo No. 1474, Massachusetts Institute of Technology,

March 1994.

[BSMM00] Ilja N. Bronstein, Konstantin A. Semendjajew, Gerhard Musiol, and Heiner Mühlig.

Taschenbuch der Mathematik. Verlag Harry Deutsch, Frankfurt am Main, 5th edition, 2000.

[BYCR93] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inform. Comput.,

106:234–252, 1993.

[CN86] W. Chin and S. Ntafos. Optimum watchman routes. In Proc. 2nd Annu. ACM Sympos.

Comput. Geom., pages 24–33, 1986.

[CN88] W. Chin and S. Ntafos. Optimum watchman routes. Inform. Process. Lett., 28:39–44, 1988.

[DELM03] Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence of

polygons. In Proc. 35th Annu. ACM Sympos. Theory Comput., pages 473–482, 2003.

[DHN97] G. Das, P. Heffernan, and G. Narasimhan. LR-visibility in polygons. Comput. Geom. Theory

Appl., 7:37–57, 1997.

[DJMW91] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph construction.

Transactions on Robotics and Automation, 7:859–865, 1991.

[DKK01] Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal constrained

graph exploration. In Proc. 12th ACM-SIAM Symp. Discr. Algo., pages 307–314, 2001.

[DKK06] Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal constrained

graph exploration. ACM Trans. Algor., 2:380–402, 2006.

[DKP91] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment. In

Proc. 32nd Annu. IEEE Sympos. Found. Comput. Sci., pages 298–303, 1991.

[DKP98] Xiaotie Deng, Tiko Kameda, and Christos Papadimitriou. How to learn an unknown envi-

ronment I: The rectilinear case. J. ACM, 45(2):215–245, 1998.

116 BIBLIOGRAPHY

[EFK+06] Andrea Eubeler, Rudolf Fleischer, Tom Kamphans, Rolf Klein, Elmar Langetepe, and Ger-

hard Trippen. Competitive online searching for a ray in the plane. In Sándor Fekete, Rudolf

Fleischer, Rolf Klein, and Alejandro López-Ortiz, editors, Robot Navigation, number 06421

in Dagstuhl Seminar Proceedings, 2006.

[FKK+04] Rudolf Fleischer, Tom Kamphans, Rolf Klein, Elmar Langetepe, and Gerhard Trippen.

Competitive online approximation of the optimal search ratio. In Proc. 12th Annu. Eu-

ropean Sympos. Algorithms, volume 3221 of Lecture Notes Comput. Sci., pages 335–346.

Springer-Verlag, 2004.

[Gal80] Shmuel Gal. Search Games, volume 149 of Mathematics in Science and Engeneering.

Academic Press, New York, 1980.

[GKP98] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics. Addison-

Wesley, 1998.

[GR03] Yoav Gabriely and Elon Rimon. Competitive on-line coverage of grid environments by a

mobile robot. Comput. Geom. Theory Appl., 24:197–224, 2003.

[HIKK97] Frank Hoffmann, Christian Icking, Rolf Klein, and Klaus Kriegel. A competitive strategy

for learning a polygon. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pages 166–

174, 1997.

[HIKK01] Frank Hoffmann, Christian Icking, Rolf Klein, and Klaus Kriegel. The polygon exploration

problem. SIAM J. Comput., 31:577–600, 2001.

[HIKL99] Christoph Hipke, Christian Icking, Rolf Klein, and Elmar Langetepe. How to find a point

on a line within a fixed distance. Discrete Appl. Math., 93:67–73, 1999.

[IKKL00a] Christian Icking, Thomas Kamphans, Rolf Klein, and Elmar Langetepe. Exploring an un-

known cellular environment. In Abstracts 16th European Workshop Comput. Geom., pages

140–143. Ben-Gurion University of the Negev, 2000.

[IKKL00b] Christian Icking, Thomas Kamphans, Rolf Klein, and Elmar Langetepe. Exploring an un-

known cellular environment. Unpublished Manuscript, FernUniversität Hagen, 2000.

[IKKL05] Christian Icking, Tom Kamphans, Rolf Klein, and Elmar Langetepe. Exploring simple grid

polygons. In 11th Internat. Comput. Combin. Conf., volume 3595 of Lecture Notes Comput.

Sci., pages 524–533. Springer, 2005.

[IKL97] Christian Icking, Rolf Klein, and Elmar Langetepe. Searching for the kernel of a polygon:

A competitive strategy using self-approaching curves. Technical Report 211, Department

of Computer Science, FernUniversität Hagen, Germany, 1997.

[IKL99] Christian Icking, Rolf Klein, and Elmar Langetepe. An optimal competitive strategy for

walking in streets. In Proc. 16th Sympos. Theoret. Aspects Comput. Sci., volume 1563 of

Lecture Notes Comput. Sci., pages 110–120. Springer-Verlag, 1999.

[IKL+04] Christian Icking, Rolf Klein, Elmar Langetepe, Sven Schuierer, and Ines Semrau. An opti-

mal competitive strategy for walking in streets. SIAM J. Comput., 33:462–486, 2004.

[IKM94] Christian Icking, Rolf Klein, and Lihong Ma. An optimal competitive strategy for looking

around a corner. Technical Report 167, Department of Computer Science, FernUniversität

Hagen, Germany, 1994.

[IPS82] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs. SIAM J.

Comput., 11:676–686, 1982.

BIBLIOGRAPHY 117

[KL03] Tom Kamphans and Elmar Langetepe. The Pledge algorithm reconsidered under errors in

sensors and motion. In Proc. of the 1th Workshop on Approximation and Online Algorithms,

volume 2909 of Lecture Notes Comput. Sci., pages 165–178. Springer, 2003.

[Kle91] Rolf Klein. Walking an unknown street with bounded detour. In Proc. 32nd Annu. IEEE

Sympos. Found. Comput. Sci., pages 304–313, 1991.

[Kle97] Rolf Klein. Algorithmische Geometrie. Addison-Wesley, Bonn, 1997.

[KPY96] Elias Koutsoupias, Christos H. Papadimitriou, and Mihalis Yannakakis. Searching a fixed

graph. In Proc. 23th Internat. Colloq. Automata Lang. Program., volume 1099 of Lecture

Notes Comput. Sci., pages 280–289. Springer, 1996.

[Lan00] Elmar Langetepe. Design and Analysis of Strategies for Autonomous Systems in Motion

Planning. PhD thesis, Department of Computer Science, FernUniversität Hagen, 2000.

[LB99] Sharon Laubach and Joel Burdick. RoverBug: Long range navigation for mars rovers.

In Peter Corke and James Trevelyan, editors, Proc. 6th Int. Symp. Experimental Robotics,

volume 250 of Lecture Notes in Control and Information Sciences, pages 339–348. Springer,

1999.

[Lee61] C. Y. Lee. An algorithm for path connections and its application. IRE Trans. on Electronic

Computers, EC-10:346–365, 1961.

[LOS96] Alejandro López-Ortiz and Sven Schuierer. Walking streets faster. In Proc. 5th Scand.

Workshop Algorithm Theory, volume 1097 of Lecture Notes Comput. Sci., pages 345–356.

Springer-Verlag, 1996.

[LS87] V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile automaton

moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2:403–430, 1987.

[Sch01] S. Schuierer. Lower bounds in on-line geometric searching. Comput. Geom. Theory Appl.,

18:37–53, 2001.

[Sha52] Claude E. Shannon. Presentation of a maze solving machine. In H. von Foerster, M. Mead,

and H. L. Teuber, editors, Cybernetics: Circular, Causal and Feedback Mechanisms in

Biological and Social Systems, Transactions Eighth Conference, 1951, pages 169–181, New

York, 1952. Josiah Macy Jr. Foundation. Reprint in [Sha93].

[Sha93] Claude E. Shannon. Presentation of a maze solving machine. In Neil J. A. Sloane and

Aaron D. Wyner, editors, Claude Shannon: Collected Papers, volume PC-03319. IEEE

Press, 1993.

[SM92] A. Sankaranarayanan and I. Masuda. A new algorithm for robot curvefollowing amidst

unknown obstacles, and a generalization of maze-searching. In Proc. 1992 IEEE Internat.

Conf. on Robotics and Automation, pages 2487–2494, 1992.

[SS99] Sven Schuierer and Ines Semrau. An optimal strategy for searching in unknown streets. In

Proc. 16th Sympos. Theoret. Aspects Comput. Sci., volume 1563 of Lecture Notes Comput.

Sci., pages 121–131. Springer-Verlag, 1999.

[Sut69] Ivan E. Sutherland. A method for solving arbitrary wall mazes by computer. IEEE Trans.

on Computers, 18(12):1092–1097, 1969.

[SV90a] A. Sankaranarayanan and M. Vidyasagar. A new path planning algorithm for a point object

amidst unknown obstacles in a plane. In Proc. 1990 IEEE Internat. Conf. on Robotics and

Automation, pages 1930–1936, 1990.

118 BIBLIOGRAPHY

[SV90b] A. Sankaranarayanan and M. Vidyasagar. Path planning for moving a point object amidst

unknown obstacles in a plane: A new algorithm and a general theory for algorithm devel-

opments. In Proceedings of 1990 IEEE Conf. on Decision and Control, pages 1111–1119,

1990.

[SV91] A. Sankaranarayanan and M. Vidyasagar. Path planning for moving a point object amidst

unknown obstacles in a plane: The universal lower bound on the worst case path lengths

and a classification of algorithms. In Proc. 1991 IEEE Internat. Conf. on Robotics and

Automation, pages 1734–1741, 1991.

[THL98] L. H. Tseng, P. Heffernan, and D. T. Lee. Two-guard walkability of simple polygons. Inter-

nat. J. Comput. Geom. Appl., 8(1):85–116, 1998.

[Wal86] Wolfgang Walter. Gewöhnliche Differentialgleichungen. Springer, 1986.

[Web07] Maximilian Weber. Online suche auf beschränkten sternen. Diplomarbeit, Rheinische

Friedrich-Wilhelms-Universität Bonn, 2007.

INDEX

Index

•∪ .see disjoint union

1-Layer . 14

1-Offset . 14

2-Layer . 14

2-Offset . 14

lower bound . 5

A

Abelson . 45

accumulator strategy . 31

adjacent . 8

Albers . 30, 111

Alpern .63

angular counter . 43

approximation . 30

Arkin .30

B

Backtrace . 19

backward analysis . 83

Betke . 30

Bug-Algorithms . 52

C

CAB . 88

caves . 80

cell . 8

Cfree-condition .46

Chalf-condition .47

Chin . 97, 98, 100

columns . 29

competitive . 35, 37

configuration space . 46

constrained . 31

Constraint graph-exploration 31

cow-path . 62

current angular bisector . 88

cut . 98

D

Deng . 101, 110

DFS . 8, 11

diagonally adjacent . 8, 27

Dijkstra .19

diSessa . 45

disjoint union . 15

doubling . 92

doubling heuristic . 62

Dror . 97, 104

Dudek . 40

Duncan . 35, 37

E

Efrat . 97, 104

error bound . 45

Euclidean metric . 101

F

facade . 103

Fekete . 30

fence-polygon .103

Fleischer .93

functionals . 62

funnel (polygon) .82

funnel polygons . 82

funnel situation . 82

G

Gabriely .27, 29

Gal .63

Geometric search . 90

goal set . 90

Greedy . 101

grid-environment . 8

gridpolygon . 8, 30

H

Hit-Point . 52

Hit-Points .46

Hoffmann . 110

120 INDEX

I

Icking 5, 18, 21, 88, 106, 110

Itai . 8

J

Java-Applet . 18

Java-Applets . 43

Jenkin . 40

K

Kameda . 101

Kamphans . 5, 18, 21, 49, 93

Klein 5, 18, 21, 80, 88, 93, 106, 110

Kobourov . 35, 37

Koutsoupias . 91, 93

Kriegel . 110

Kumar . 35, 37

Kursawe . 30, 111

L

L1-metric . 101

L2-metric . 101

Langetepe 5, 18, 21, 49, 88, 93

Layer .15

layer . 27

Leave-Point . 52

Leave-Points . 46

Lee . 19

Left-Hand-Rule .10–13, 44

Linke Ecke . 105

lost-cow . 62

Lower Bound . 9

lower bound . 8, 54, 80, 82

Lubiw . 97, 104

Lumelsky . 52, 53, 55, 58

M

Ma . 106

Manhatten-metric . 101

Milios . 40

Mitchell . 30, 97, 104

monotone . 97

m-ray-search . 63

N

narrow passages . 20

Navigation . 43, 52

navigation . 61

NP-hard . 111

NP-hart . 8, 91

Ntafos . 97, 98, 100

O

Offline–Strategy . 5

Online–Strategy . 5

Online-Strategy .8

optimal search path . 91

P

Papadimitriou . 8, 91, 93, 101

partially occupied cells . 23

path . 8

periodic order . 64

piecemeal-condition . 30

Pledge . 44

Polygon

monotone .97

rectilinear .97

Q

Queue . 19

R

Rechte Ecke . 105

rectilinear .97

recurrence . 66

Rimon . 27, 29

Rivest . 30

Roll–Out . 100

RoverBug . 52

S

Sankaranarayanan . 52, 56

Schuierer . 30, 88, 111

Search Games . 62

search path .90

search ratio . 90

Searching . 43, 52

searching . 61

searching depth .62

Semrau . 88

Shannon . 3

Shortest Path Tree . 105

Shortest Watchman Route 97

Singh .30

Sleator . 5

SmartDFS . 13, 14

spanning tree . 23

INDEX 121

Spanning-Tree-Covering . 23

split-cell . 14

Stepanov . 52, 53, 55, 58

street . 79

street polygon . 79

sub-cells . 23

Sutherland . 3

Szwarcfiter . 8

T

Tarjan . 5

tether strategy . 31

tool . 23

touch sensor .8

Touring Polygon Problem 103

triangulation . 100

Trippen . 93

U

unimodal . 63

V

vertex search . 90

Vidyasagar . 56

visibility polygon . 61, 61

visible . 61

W

Wave propagation . 19

weakly visible . 79

Wilkes .40

work space . 46

Y

y–monotone .97

Yannakakis . 91, 93

122 INDEX

