Voronoi Diagram and Delaunay Triangulation Randomized Incremental Construction

Chih-Hung Liu

May 13, 2015

Voronoi Diagrams

- Voronoi Diagrams and Delaunay Triangulations
 Properties and Duality
- 2 Randomized Incremental Construction

・ロト ・四ト ・ヨト ・ヨト ・

∃ 𝒫𝔅

• Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision

•

٠

.

٠

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

• Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision

→ < Ξ →</p>

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).

< < >> < </>

프 🖌 🛪 프 🛌

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).

< < >> < </>

프 🖌 🛪 프 🛌

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).

< < >> < </>

프 🖌 🛪 프 🛌

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site *p* ∈ *S* and is denoted by VR(*p*, *S*).
 - 2 For each point $x \in VR(p, S)$, p is its closest site in S.

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).
 - 2 For each point $x \in VR(p, S)$, p is its closest site in S.
- VR(p, S) is the locus of points closer to p than any other site.

• Bisector
$$B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$$

Voronoi Diagrams

₹ 990

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

Voronoi Diagrams

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

Voronoi Diagrams

0

- Bisector $B(p,q) = \{x \in R^2 \mid d(x,p) = d(x,q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

$$\mathsf{VR}(p, S) = \bigcap_{q \in S, q \neq p} D(p, q).$$

프 > = > = =

۲

- Bisector $B(p,q) = \{x \in R^2 \mid d(x,p) = d(x,q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

$$\mathsf{VR}(\rho, S) = \bigcap_{q \in S, q \neq \rho} D(\rho, q).$$

Voronoi Diagrams

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
 - A piece of B(p,q)

Voronoi Diagrams

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
 - A piece of B(p,q)

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
 - A piece of B(p, q)
- Voronoi Vertex
 - Common intersection among more than two Voronoi regions VR(*p*, *S*), VR(*q*, *S*), VR(*r*, *S*), and so on.

프 > = > = =

.

x \circ

• Grow a circle from a point *x* on the plane

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

• Grow a circle from a point *x* on the plane

Voronoi Diagrams

æ

・ロト ・四ト ・ヨト ・ヨト

• Grow a circle from a point x on the plane

• Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)

Voronoi Diagrams

イロト イポト イヨト イヨト

æ

• Grow a circle from a point x on the plane

• Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)

Voronoi Diagrams

くロト (過) (目) (日)

 x_{\circ}

• Grow a circle from a point x on the plane

• Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)

くロト (過) (目) (日)

æ

• Grow a circle from a point x on the plane

- Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
- Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)

Voronoi Diagrams

< □ > < 同 > < 注 > <

• Grow a circle from a point x on the plane

- Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
- Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)

ヘロト 人間 ト ヘヨト ヘヨト

э

• Grow a circle from a point x on the plane

 x_{o}

- Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
- Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)

・ロト ・四ト ・ヨト ・ヨト

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
 - Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)
 - Hit more than two sites p, q, r, ... ∈ S → x is the Voronoi vertex among VR(p, S), VR(q, S), VR(r, S), ...

Voronoi Diagrams

< □ > < 同 > < 三 > <

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
 - Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)
 - Hit more than two sites p, q, r, ... ∈ S → x is the Voronoi vertex among VR(p, S), VR(q, S), VR(r, S), ...

・ロン・(理)・・ヨン・ヨン 三臣

٠

٠

.

٠

• Grow circles from $\forall p \in S$ at unit speed

э

▲□ ▶ ▲ 三 ▶ ▲

• Grow circles from $\forall p \in S$ at unit speed

Voronoi Diagrams

イロト イポト イヨト イヨト

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - *x* ∈ *R*² is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - *x* ∈ *R*² is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - *x* ∈ *R*² is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)
 - $x \in \mathbb{R}^2$ is first hit by three circles from p, q, and $r \to x$ is a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - *x* ∈ *R*² is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)
 - $x \in \mathbb{R}^2$ is first hit by three circles from p, q, and $r \to x$ is a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)

• VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.

Voronoi Diagrams

э

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p

Voronoi Diagrams

≣ →

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overrightarrow{cp}$, x belongs to VR(p, S)

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray cp from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overrightarrow{cp}$, x belongs to VR(p, S)

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overrightarrow{cp}$, x belongs to VR(p, S)
 - \overrightarrow{cp} extends to the infinity.

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overrightarrow{cp}$, x belongs to VR(p, S)
 - \overrightarrow{cp} extends to the infinity.
- If S is in convex position, V(S) is a tree.

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overrightarrow{cp}$, x belongs to VR(p, S)
 - \vec{cp} extends to the infinity.
- If S is in convex position, V(S) is a tree.
- An unbounded Voronoi edge corresponds to a hull edge.

Voronoi Diagram (Mathematic Definition)

• Voronoi Diagram V(S)

$$V(S) = R^2 \setminus (\bigcup_{p \in S} \mathsf{VR}(p, S)) = \bigcup_{p \in S} \partial \mathsf{VR}(p, S)$$

- $\partial VR(p, S)$ is the boundary of VR(p, S)
 - $\partial VR(p, S) \not\subset VR(p, S)$
- V(S) is the union of all the Voronoi edges
- Voronoi Edge *e* between VR(p, S) and VR(q, S)

 $e = \partial \mathsf{VR}(p, S) \cap \partial \mathsf{VR}(q, S)$

• Voronoi Vertex v among VR(p, S), VR(q, S), and VR(r, S)

 $v = \partial \mathsf{VR}(p, S) \cap \partial \mathsf{VR}(q, S) \cap \partial \mathsf{VR}(r, S)$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Complexity of V(S)

Theorem

V(S) has O(n) edges and vertices. The average number of edges of a Voronoi region is less than 6.

- Add a large curve F
 - Γ only passes through unbounded edges of V(S)
 - Cut unbounded pieces outside Г
 - One additional face and several edges and vertices.

Complexity of V(S)

Theorem

V(S) has O(n) edges and vertices. The average number of edges of a Voronoi region is less than 6.

- Euler's Polyhedron Formula: v e + f = 1 + c
 - *v*: # of vertices, *e*: # of edges, *f*: # of faces, and *c*: # number of connected components.
- An edge has two endpoints, and a vertex is incident to at least three edges.
 - $3v \leq 2e \rightarrow v \leq 2e/3$
- f = n + 1 and c = 1
 - $v = 1 + c + e f = e + 1 n \le 2e/3 \rightarrow e \le 3n 3$

• $e = v + f - 1 - c = v + n - 1 \ge 3v/2 \rightarrow v \le 2n - 2$

• Average number of edges of a region $\leq (6n - 6)/n < 6$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

ъ

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Crossing (\overline{pq})

Voronoi Diagrams

ヘロト ヘアト ヘビト ヘビト

3

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Not Maximal (\overline{pq} is allowable)

Voronoi Diagrams

くロト (過) (目) (日)

ъ

Given a set *S* of points on the plane, a triangulation is maximal collection of non-crossing line segments among *S*.

Triangulation

Voronoi Diagrams

ヘロト ヘアト ヘビト ヘビト

3

An edge \overline{pq} is called **Delaunay** if there exists a circle passing through *p* and *q* and containing no other point in its interior.

 \overline{pq} is **Delaunay**

프 🕨 🗆 프

< □ > < 同 > < 三 > <

An edge \overline{pq} is called **Delaunay** if there exists a circle passing through *p* and *q* and containing no other point in its interior.

 \overline{pq} is **Delaunay**

프 🕨 🗆 프

An edge \overline{pq} is called **Delaunay** if there exists a circle passing through *p* and *q* and containing no other point in its interior.

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

ヘロト ヘアト ヘビト ヘビト

2

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

ヘロト ヘアト ヘビト ヘビト

2

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

문▶ 문

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

• For each face, there exists a circle passing all its vertices and containing no other point.

No more than two point sites are colinear

Voronoi Diagrams

イロト イポト イヨト イヨト

ъ

No more than two point sites are colinear

• V(S) is connected

くロト (過) (目) (日)

ъ

No more than two point sites are colinear V(S) is connected

No more than three point sites are cocircular (At most three points are on the same circle)

- No more than two point sites are colinear
 V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
 - degree of each Voronoi vertex is exactly 3.

- No more than two point sites are colinear
 V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
 - degree of each Voronoi vertex is exactly 3.
 - Each face of the Delaunay triangulation is a triangle.

- No more than two point sites are colinear
 V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
 - degree of each Voronoi vertex is exactly 3.
 - Each face of the Delaunay triangulation is a triangle.
 - There is a unique Delaunay triangulation.

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

• A site $p \leftrightarrow$ a Voronoi region VR(p, S)

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow$ a Voronoi region VR(p, S)
- A Delaunay edge pq ↔ a Voronoi edge between VR(p, S) and VR(q, S)

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow$ a Voronoi region VR(p, S)
- A Delaunay edge pq ↔ a Voronoi edge between VR(p, S) and VR(q, S)
- A Delaunay triangle △pqr ↔ a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)

• Lower Bound for Time: $\Omega(n \log n)$

<ロト <回 > < 注 > < 注 > 、

æ

Algorithms

- Lower Bound for Time: $\Omega(n \log n)$
 - Convex hull of S can be computed in linear time from V(S).

イロト イポト イヨト イヨト

2

Algorithms

- Lower Bound for Time: $\Omega(n \log n)$
 - Convex hull of S can be computed in linear time from V(S).

- O(n log n) time algorithms
 - Plane Sweep Algorithm
 - Divide and Conquer Algorithm

프 🕨 🗆 프

Randomized Incremental Construction

- General Idea
 - Consider a random sequence of S, (s_1, s_2, \ldots, s_n) .
 - Let R_i be $\{s_1, ..., s_i\}$
 - From i = 4 to i = n 1, construct $V(R_{i+1})$ from $V(R_i)$ by inserting s_{i+1} .
- Tasks
 - What is a configuration?
 - What is a conflict relation?
 - How to use conflict relations to insert a site?
 - How to update conflict relations?
- General Position Assumption
 - No more than three sites are located on the same circle
 - \rightarrow The degree of a Voronoi vertex is exactly 3
 - No more than two points are located on the same line
 - \rightarrow The Voronoi diagram is connected

ヘロン 人間 とくほとく ほとう

Configuration: A Voronoi edge

- A Voronoi region can not be a configuration because it could consist of O(n) edges, i.e., it is not defined by a constant number of sites
- Consider a Voronoi edge *e* between VR(*p*, *S*) and VR(*q*, *S*)
 - $e \subseteq B(p,q)$
 - Assume *e* has two endpoints *v* and *u*. Then
 - $v = \overline{VR(p, S)} \cap \overline{VR(q, S)VR(r, S)}$ and $u = \overline{VR(p, S)} \cap \overline{VR(q, S)VR(s, S)}$.
 - e is defined by p, q, r, s
 - A Voronoi edge is defined by at most 4 sites.

Conflict Relation

• A site $t \in S \setminus R$ conflicts with a Voronoi edge *e* between VR(p, R) and VR(q, R) if $e \cap VR(t, R \cup \{t\}) \neq \emptyset$.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Conflict Relation

• A site $t \in S \setminus R$ conflicts with a Voronoi edge *e* between VR(p, R) and VR(q, R) if $e \cap VR(t, R \cup \{t\}) \neq \emptyset$.

Lemma

 $e \cap VR(r, R \cup \{r\}) = e \cap VR(r, \{p, q, r\})$ (Local Test)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Lemma

$V(R) \cap VR(t, R \cup \{t\})$ is a tree

Voronoi Diagrams

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Lemma

$V(R) \cap VR(t, R \cup \{t\})$ is a tree

Voronoi Diagrams

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Lemma $V(R) \cap VR(t, R \cup \{t\})$ is a tree

Use the conflict list to find an edge which conflicts with t.

Voronoi Diagrams

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Lemma

 $V(R) \cap VR(t, R \cup \{t\})$ is a tree

Use the conflict list to find an edge which conflicts with *t*.

2 From the edge to find out $V(R) \cap VR(t, R \cup \{t\})$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ ∽ � � �

Lemma

 $V(R) \cap VR(t, R \cup \{t\})$ is a tree

- Use the conflict list to find an edge which conflicts with *t*.
- 2 From the edge to find out $V(R) \cap VR(t, R \cup \{t\})$
- So Link the leaves of $V(R) \cap VR(t, R \cup \{t\})$ clockwise

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Lemma

 $V(R) \cap VR(t, R \cup \{t\})$ is a tree

- Use the conflict list to find an edge which conflicts with *t*.
- 2 From the edge to find out $V(R) \cap VR(t, R \cup \{t\})$
- **③** Link the leaves of $V(R) \cap VR(t, R \cup \{t\})$ clockwise

◆□ → ◆ 三 → ◆ 三 → ◆ □ →

Lemma

 $V(R) \cap VR(t, R \cup \{t\})$ is a tree

- Use the conflict list to find an edge which conflicts with *t*.
- 2 From the edge to find out $V(R) \cap VR(t, R \cup \{t\})$
- **③** Link the leaves of $V(R) \cap VR(t, R \cup \{t\})$ clockwise

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Update Conflict Relations: Partial Edges

Consider an edge e' of V(R ∪ {t}) which belongs to an edge e of V(R)

Lemma

Any site $s \in S \setminus (R \cup \{t\})$ in conflict with e' will conflict with e. That is, if $e' \cap VR(s, R \cup \{t, s\}) \neq \emptyset$, $e \cap VR(s, R \cup \{s\}) \neq \emptyset$.

- The set of sites in conflict with e' is a subset of the set of sites in conflict with e
- For each site in conflict with e, check if it conflicts with e'.

Update Conflict Relations: Fully new edges

 Consider an edge e' of V(R ∪ {t}) which does not belong to any edge of V(R)

Lemma

e' and a path of $V(R) \cap VR(t, R \cup \{t\})$ will form a cycle. Let *P* be the path in $V(R) \cap VR(t, R \cup \{t\})$ which forms a cycle with *e'*. Any site $s \in S \setminus (R \cup \{t\})$ in conflict with *e'* will conflict with one edge along the path.

For each site in conflict with an edge of *P*, check if it conflicts with e'.

Lemma

Each edge of V(R) which is destroyed due to the insertion of t will be check at most 3 times.

An edge of V(R) contains at most one edge V(R ∪ {t}) and belongs to at most two paths which form a cycle with an edge of V(R ∪ {t}).

Lemma

The time to insert *t* is proportional to the total size of the conflict lists for the edges of V(R) which are destroyed due to the insertion of *t*

ヘロン 人間 とくほ とくほ とう

ъ

Thank You!!

Voronoi Diagrams

・ロト ・聞ト ・ヨト ・ヨト