6. Top-Down Sampling

Top-Down Sampling is a divide-and-conquer method of building search structures based on random sampling.

A randomized binary tree is the simplest search structure based on random sampling

- 1. Choose a random point p from the given set N of points
- 2. p divides N into two subsets, N_1 and N_2 , of roughly equal size
- 3. Label the root of the search tree with p
- 4. The children of this root are the recursively built trees for N_1 and N_2 .

General geometric search problem: Given a set N of objects in \mathbb{R}^d , construct the induced complex (partition) H(N) and a geometric search structure $\tilde{H}(N)$ that can be used to answer the queries over H(N) quickly.

• a point location query in a planar subdivision

Assumption

The complex H(N) satisfies the bounded degree property.

- Every face of H(N), at least of the dimension that matters, is defined by a bounded number of objects in N
- This assumption is needed to make the randome sampling technique
- \bullet If partition does not satisfy the assumption, a suitable refinement is needed
 - Vertical trapezoidal decomposition for the arrangement.

General Process

- 1. Choose a random subset $R \subset N$ of a large enough constant r
- 2. Build H(R) and a search structure for H(R)
 - \bullet Since the size of R is a constant , the search structure is typically trivial.
- 3. Build conflicts of all faces of H(R) of relevant dimensions
 - The notion of a conflict depends on the problem under consideration.
- 4. For each such face $\Delta \in H(R)$, recursively build a search structure for $N(\Delta)$, which is the set of objects in N in conflict with Δ .
- 5. Build an ascent structure, denoted by $\operatorname{ascent}(N, R)$.
 - It is used in queries described latter.

The queries are answered as bellow

- The original query is over the set N
- \bullet We answer the query over the smaller set R using the trivial search structure associated with H(R)
- If $\Delta \in H(R)$ is the answer to this smaller query, we recurisvely answer the query over the set $N(\Delta)$ of conflicting objects
- After reaching the bottommost face, using the ascent structure $\operatorname{ascent}(N, R)$, we determine the answer over the set N

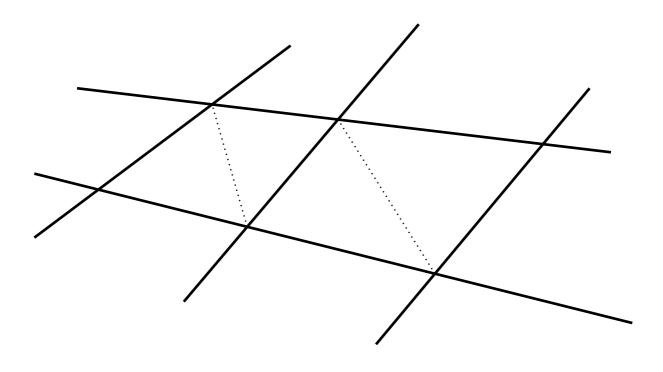
Arrangment of lines

- N is a set of n given lines in the plane
- $\bullet~G(N)$ is the arrangement formed by N
- Γ is a fixed triangle in the plane
 - At the root level, the vertices of Γ is assumed to be at infinity, i.e., $\Gamma=\mathbb{R}^2$
- For any given query point q in $\Gamma,$ answer the face in the intersection $\Gamma\cap G(N)$ containing q

Canonical Triangulation

H(N) is the canonical for $G(N) \cap \Gamma$

- For a (possibly unbounded) convex polygon C, the canonical triangulation of C is a refinement for C by linking its bottom vertex to its other vertices (break ties arbitrarily)
- The canonical triangulation for $G(N) \cap \Gamma$ is a refinement for it by applying the canonical triangulation to each of its faces.
- \bullet H(N) can be constructed in ${\cal O}(n^2)$ time and space
- H(N) has the bounded degree



Top-Dowm Sampling for the search structure

- 1. Let Γ be the root and compute $G(N) \cap \Gamma$
- 2. Select a random sample R of N of size r, where r is a large enough constant.
- 3. Construction H(R)
- 4. For each triangle $\Delta \in H(R)$, compute $N(\Delta)$, where $N(\Delta)$ denotes its conflict list, i.e., the set of lines in $N \setminus R$ intersecting Δ .
- 5. If one triangle of H(R) has a conflict size large than $b(n/r) \log r$, for an appropriate constant b, repeat step 2–4.
- 6. For each triangle $\Delta \in H(R)$, recur the computation on $G(N(\Delta) \cap \Delta)$
- 7. For each $\Delta \in H(R)$, associate with every face of $G(N(\Delta)) \cap triangle$ a parent pointer to the face containing it in $G(N) \cap \Gamma$.

The construction time without recursive call

- 1. $O(n^2)$ time to construct G(N)
- 2. O(n) to pick a random sample because r is a constant
- 3. O(1) to construct H(R) because r is a contant
- 4. O(n) to compute $N(\bigtriangleup)$ for all triangle in H(R) because H(R) has O(1) triangle
- 5. The expected number of repetition is O(1), so step 2–5 take O(n) expected time
 - With probability at least 1/2, the conflict size of each triangle in H(R) is less than $b(n/r) \log r$
 - If the probability of success in each trial is at least 1/2, the expected number of required trails is O(1)
- 6. $O(r^2)$ recursive calls and the size of each call is at most $O(b(n/r)\log r)$
- 7. $O(n^2)$ to make parent pointers (Could be an Exercise)

Point Location using the search structure

For a query point p in Γ , locate the face in $G(N) \cap \Gamma$) that contains p

- 1. Locate the triangle \triangle in H(R) containing p
 - O(1) time because H(R) has O(1) triangles
- 2. Recursively locate the face of $G(N(\bigtriangleup)) \bigtriangleup$ containing p
- 3. Use the parent pointer associated with the recursively found face to tell the face of $G(N) \cap \Gamma$) containing p

The query time is $O(\log n)$

- Let q(n) be the query time of locating a point in an arrangement formed by n lines.
- If n is less than a threshold, q(n) = 1
- Otherwise,

$$q(n) = O(1) + q(b\frac{n}{r}\log r)$$

• If r is sufficiently large constant, the statement follows.

The expected construction time is $O(n^{2+\epsilon})$

- Let t(n) be the expected time to construct the search structure for an arrangement formed by n lines
- If n is less than a threshold, t(n) = 1
- otherwise,

$$t(n) = O(n^2) + \sum_{\Delta \in H(R)} t(|N(\Delta)|) = O(n^2) + O(r^2) \cdot t(b\frac{n}{r}\log r).$$

- The depth of recursion is $O(\log_r n)$
- $t(n) = n^2 c^{\log_r n}$, where c is a constant that is sufficiently larger than b and the constant within the Big-Oh bound
- For any real number $\epsilon > 0$, we can choose r large enough such that, $t(n) = O(n^{2+\epsilon}).$

(The last two derivations will be an exercise)

The size of the search structure is $O(n^{2+\epsilon})$

• It follows from the same derivation as the construction time but the complexity is deterministic.

Theorem

For every arragement of n lines in the plane and for any real number $\epsilon > 0$, one can construct a point location structure of $O(n^{2+\epsilon})$ size, guaranteeing $O(\log n)$ query time, in $O(n^{2+\epsilon})$ expected time