
5. Random Sampling and Arrangement of Lines

A central concept of statistics is

A random sample is a good estimator for statisical population

The concept of randomized divide-and-conquer Quick-Sort

• Let N be any set of points in the real line.

• If we pick a random element S from N , then S probably divides the line

into interval of roughly equal size. The size mean the number of unchosen

points lying in the interval.

Random Sampling without replacement

• Given a set N of objects, a r-element subset R of N is a random sample

if every element in N is equally likely to be in R.

– Choose the first element in R randomly from N

– Choose the seond element in R from the remaining n − 1 elements

independently and randomly.

– Repeat the process untail r elements from N are chosen.

An interesting and important question:

Given a set N of n points in the real line, does a random sample R of N of

size r divide the real line into roughly equal size?

• Let H(R) be the partition of the real line formed by R.

• For each interval I in H(R), the conflict size of I is the number of points

in N \R lying in I .

Is the conflict size of each interval in H(R) O(n/r) with high

probability?

Most researchers conjecture the positive answer, but no one can prove it over

several centries.



Main Theorem

For a set N of n points on the real line and a random sample R of N of size r,

with probability greather than 1/2, the conflict size of each interval in H(R)

is O([n/r] log r).

More generally, for any fixed c > 2 and any s ≥ r > 2, with probabil-

ity 1 − O(1/sc−2), the conflict size of each interval in H(R) is less than

c(n ln s)/(r− 2). In other words, the probability of some conflict size exceed-

ing c(n ln s)/(r − 2) is small, O(1/sc−2) to be precise.

Proof of Main Theorem

Terminology

• Π = Π(N) is the set of all pairs the form (p, q) where p, as well as q, is a

point in N or a point at infinity.

• A point at infinity means either −∞ or +∞

• σ is any such pair in Π, and thus defines an interval on the real line.

• D(σ) is {p, q} ∩N , and consists of the endpoints of σ not at the infinity.

The points in D(σ) is said to define σ.

• d(σ) is the size of D(σ) and is called the degree of σ. d(σ) is 0, 1, or 2.

– d((p, q)) = 2, d((−∞, p)), and d((−∞,+∞)).

• L(σ) is the set of points in N that lies in the interior of σ. The points in

L(σ) is said to conflict with σ

• l(σ) is the size of L(σ) and called the conflict size of σ.

• Π is a configuration space of N

– An interval σ ∈ Π is active over a subset R ⊆ N if σ is an interval of

H(R)

– σ is an interval of H(R) if and only R contains all points in D(σ) but

no poin in L(σ).

Conditional Probability

• Let R ⊆ N denote a random sample of N of size r.

• Let p(σ, r) denote the conditional probability that R contains no point

in conflict with σ, given that it contains the points defining σ.



Claim

p(σ, r) ≤ (1− l(σ)

n
)r−d(σ)

Intuition

• Since R must contain D(σ), the remaining r− d(σ) can be thought of as

resulting from independent random draws.

• The probability of choosing a conflicting point in any such draw is greater

than or equal to l(σ)/n.

Rigorous justification

• Let R′ be R \D(σ)

• R′ is a random sample of the set N ′ = N \D(σ) of size n− d(σ)

• R′ is obtained from N ′ by r − d(σ) successive random drwas without

replacement.

• For each j ≥ 1, the probability that the point chosen in the jth draw

does not conflict with σ, given that no point chosen in any previous draw

conflicts with σ, is

1− l(σ)

n− d(σ)− j
≤ 1− l(σ)

n
.

• Then

p(σ, r) =

r−d(σ)∏
j=1

1− l(σ)

n− d(σ)− j
≤ (1− l(σ)

n
)r−d(σ)



Proof of Main Theorem(continue)

• Since 1− l(σ)/n ≤ exp(−l(σ)/n), the claim implies

p(σ, r) ≤ exp(−l(σ)

n
(r − d(σ)),

where exp(x) denotes ex.

• Since d(σ) ≤ 2,

p(σ, r) ≤ exp(−l(σ)

n
(r − 2)).

• If l(σ) ≥ c(n ln s)/(r − 2), for some c > 1, then

p(σ, r) ≤ exp(−c ln s) =
1

sc
.

Combined probability

• Let q(σ, r) denote the probability that R contains all points in D(σ).

• The probability that σ is active over R is precisely p(σ, r)q(σ, r).

The probability that some σ ∈ Π, with l(σ) > c(n ln s)/(r−2), is active over

R is bounded by∑
σ∈Π:l(σ)>cn ln s

r−2

p(σ, r)q(σ, r) ≤
∑

σ∈Π:l(σ)>cn ln s
r−2

q(σ, r)/sc ≤ 1

sc

∑
σ∈Π

q(σ, r).

Summary

• Let π(R) denote the number of intervals in Π whose defining points are

in R.

•
∑

σ∈Π q(σ, r) is π(R).

• For a random sample R of N , the probability that some σ ∈ Π, with

l(σ) > cn ln s/(r − 2), is active over R is bounded by

1

sc
E[π(R)].

• Since R has r points, π(R) =
(
r
2

)
+ 2r + 1 = O(r2).

1

sc
E[π(R)] = O(

r2

sc
) = O(

1

sc−2
).



Arrangement

Given a set N of hyperplane in Rd, the arrangmenet G(N) formed by N is

the natural partition of Rd by N into faces of varying dimensions together

with the adjacencies among them.

• A face of j dimensions is called a j-face

• A d-face is called a cell

• A (d− 1)-face is caleld a facet

• A 1-face is called an edge

• A 0-face is called a vertex

General Position Assumption

• No two hyperplane are parallel to each other

• For 2 ≤ j ≤ d + 1, the intersection among j hyperplane is exactly a

(d + 1− j)-face

Arrangement in the plane

An arrangement of n lines is one of the simplest geometric structure

• O(n2) faces in total
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Facial lattice of an arrangement

• The lattice contains a node for each face of G(N)

• Each node contains auxiliary information, such as pointers to the hyper-

planes containing the corresponding face

• A node for a j-face f is linked to a node for a (j − 1)-face g if f and g

are adjacent

Fact

Cells of an arragement of lines in the plane does not allows the random sam-

pling technique

• When all lines in N are tangent to the same circle, for any subset R of

N , the central cell of the arragnement of R is intersected by all lines in

N \R.
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A cell of an arrangment G(R) does not satisfied the bounded

degree property.

That is, the collection of cells is not a configuration space.

Lines in R Lines in N \RG(R)

H(R): the vertical trapezoidal decomposition of G(R)



Bounded Valence

A configuration space Π(N) is said to have bounded valence if the number of

configurations in Π(N) sharing the same trigger sets is bounded by a constant

General Form for Main Theorem

Given a set N of n objects, a configuration space Π(N) of N with bounded

valance, and the maximum degree d of a configuration in Π(N), for any

random sampleR ofN of size r, with probability greater than 1/2, the conflict

size for each active configurations over R is at most c(n/r) log r, where c is a

large enough constant.

More generally, fixed any c > d, for any s ≥ r > d, with probability 1-

O(1/sc−d), the conflict size of each active configuration over R is less than

c(n log s)/(r − d)

Sketch of Proof:
For the same reasoning, we have the following fact.

Fact
The probability that some σ ∈ Π(N), with l(σ) ≥ c(ln s)/(r − d), is active over a ran-
dom sample R is bounded by E[π(R)]/sc, where π(R) is the number of configurations
in Π(N) whose defining objects are in R.

π(R) = O(rd)

• For each b ≤ d, there are at most
(
r
b

)
≤ rb trigger sets contained in R

• Since Π(N) has bounded valence, only a constant number of configurations

in Π(N) share the same trigger set.

E[π(R)]

sc
= O(

rd

sc
) = O(

1

sc−d
).


