
6. Bottom-Up Sampling

Bottom-Up Sampling is a gradational method of building search struc-

tures based on random sampling.

General geometric search problem:

Given a set N of objects in Rd, construct the induced complex (partition)

H(N) and a geometric search structure H̃(N) that can be used to answer

the queries over H(N) quickly.

• a point location query in a planar subdivision

Assumption

The complex H(N) satisfies the bounded degree property.

• Every face of H(N), at least of the dimension that matters, is defined by

a bounded number of objects in N

• This assumption is needed to make the randome sampling technique

• If partition does not satisfy the assumption, a suitable refinement is needed

– Vertical trapezoidal decomposition for the arrangement.

For a set N of n objects, a gradation of N

is a sequence of sets, N1, N2, . . . , Nr, such that

• N = N1 ⊇ N2 ⊆ · · · ⊇ Nr− ⊇ Nr = ∅

• Ni+1 is obtained from Ni by flipping a fair coin independently for each

object in Ni and retaining only those objects for which the toss was a

head.

Complexity with High Probability

f (n) = Õ(g(n)),

if for some positive constant c, f (n) < cg(n), with probability 1 − 1/p(n),

where p(n) is a polynomial whose degree depends on c.

• The degree of p(n) can be very high by choosing the constant c large

enough.

• With probability 1/p(n), f (n) > cg(n)

Lemma

The expected value of r = O(log n)

• N = {S1, S2, . . . , Sn}

• For 1 ≤ j ≤ n, let Xj be the random variable that Xj = i if Sj belongs

to Ni not to Ni+1.

• Xj is a geometric distribution that Pr(Xj = i) = (1/2)i

• X1, X2, . . ., and Xn are independent and identical.

• Let Tn be a random variable representing max1≤j≤nXj.

• E[r] = E[Tn]

• Then

E[Tn] =
∑
i≥1

Pr(Tn ≥ i) =
∑
i≥1

1− Pr(Tn < i)

=
∑
i≥1

1− (1− 1

2i
)n = O(

∫ ∞

1

1− (1− 1

2x
)ndx) = O(log n)

Lemma

r = Õ(log n)

• For each object in N , the probability that this object belongs to Nk+1 is

(1/2)k

• The probability that r > k is bouneded by

n

2k
.

– The probability of union of events is bounded by the sum of probabil-

ities of those event

• By choose k = c log2 n, the probablity that r > c log2 n is bounded by

n

nc
= nc−1.

• With probability at least 1− 1/nc−1,

r ≤ c log n.

General Idea for Bottom-Up Sampling

The search structure sample(N) is constructed as follow

1. Generate a gradation, (N1, N2, . . . , Nn), of N

2. Build H(Ni) for 1 ≤ i ≤ r

3. For 2 ≤ i ≤ r, associate each face of H(Ni) with the conflict list of objects

in Ni−1 \Ni that conflicting it.

4. Between two successive levels i and i + 1, compute a descent structure

descent(i + 1, i) which will be used in answering queries.

Queries for Bottom-Up Sampling

Given a query point q, answer which configuration of H(N) contains q

• From i = r to i = 1, locate the configuration of H(Ni) contains q

• From i = r, it is trivial

• When descending from Ni to Ni−1, use descent(i, i-1) to find out the

configuration of H(Ni−1) contains q

Lemma

E[

r∑
i=1

|Ni|] = O(n).

• It is equivalent to the expected sum of the maximum level of all objects

– If the maximum level of an object is i, it contributes i to the quantity

• The probability that the maximum level of an object is at least i is 1/2i−1

• The expected maximum level of an object is∑
i≥1

1

2i−1
= O(1).

• Due to linearity of expectation, we have

E[

r∑
i=1

|Ni|] =
∑

1≤j≤n
O(1) = O(n).

Skip List

For a set N of n points on the real line, the skip list sample(N) is a search

structure based on Bottom-Up Random Sample to answer which interval in

H(N) contains a fiven query point q efficiently.

• The skip list is the simpliest search structure based on Bottom-Up Random

Sampling

• There is always a dummy node associated with −∞

• For an interval I of H(Ni), the intervals in H(Ni−1) which are contained

in I are called the children of I .

Construction of Skip List

• For 1 ≤ i ≤ r, compute H(Ni) by sorting points in Ni

• For 2 ≤ i ≤ r, each point Ni is linked to its counterpart in Ni−1 by a descent

pointer.

• The construction time is
r∑

i=1

O(|Ni| log |Ni|) = O(log n)

r∑
i=1

O(|Ni|) = O(n log n).

• The bound Õ(n log n) can be obtained similarly.

descent pointer

−∞
H(N1)

H(N2)

H(N3)

H(N4)

−∞
H(N1)

H(N2)

H(N3)

H(N4)

S

41

42

43

44

A point location query for q

1. Let the single interval of H(Nr) be 4r. 4r clearly contains p

2. From i = r to i = 2,

(a) Let 4i be the interval in H(Ni) that contains q

(b) Use the descent pointer assocaited with the left endpoint of4 to search

through all children of 4i. Actually, we search from left to right and

not all children are visited.

Query time is O(log n) and Õ(log n)

• let l(4i) be the number of children of 4i

– Let l0(4i) and l1(4i) be the number of points in Ni−1 \ Ni that are

contained in 4i left and right to q, respectively.

– l(4i) = l0(4i) + l1(4i)

• When Ni−1 is fixed, l0(4i) is distributed according to the geometric dis-

tribution with probability 1/2

– because l0(4i) = k if and only if for exactly the k nearest points in

Ni−1 to the left of q, the tosses are all failures.

• E[l0(4i)] = O(1), so does E[l1(4i)] = O(1)

• E[
∑r

i=2 l(4i)] is O(log n) and Õ(log n) because r is O(log n) and

Õ(log n).

Point Location Search Structure in Arrangements

Given a set N of n lines in the plane, the point location search structure

Sample(N) for the arragnement G(N) of N is constructed as follows:

• Generate a gradation of N , N1, N2, . . . , Nr

• For 1 ≤ i ≤ r, compute the arrangment G(Ni) and the trapezoidal

decomposition H(Ni)

• For each trapezoid 4 of H(Ni), store a conflict list L(4) of the line in

Ni−1 \Ni interseting 4

• Compute the descent structure descent(i+1, i) as the partition H(Ni+1)⊕
H(Ni) by superimpossing H(Ni+1) and H(Ni) on each other

• Associate with each trapezoid in descent(i + 1, i) a pointer to the unique

trapezoid H(Ni) that contains it.

H(Nl)

4′′
q

H(Nl+1)

descent(l + 1, l) = H(Nl+1)⊕H(Nl)

4 q

q

4̃

4′

q′

q′v

v

Locate a point q in H(N) using the search structure

1. It is trivial to locate q in H(Nr) because it contains only one trapezoid,

i.e., the entire plane.

2. From i = r− 1 to i = 1, assume that we have located q in H(Ni+1), and

use descent(i + 1, i) to locate q in H(Ni) as follows

(a) Let 4 be the trapezoid in H(Ni+1) that contains q.

(b) Let 4̃ denote the restriction of the superimposed partition descent(i+

1, i) within 4.

(c) Project a vertical ray from q to hit a line Q ∈ N and let q′ be the

hitting point. It is clear than Q either from the boundary of 4 or

belongs to L(4).

(d) Let v be the intersection of Q with a line in L(4) or the boundary of

4, which is nearest to q′ on its left side.

(e) It is easy to see that computing q′ and v′ take O(|L(4)| + 1) time

(f) By walking from v to q′, we can use 4̃ to find out the trapezod in

H(Ni) that contains q.

Intuitive Analysis for Query Time

• Since E[|Ni+1|] = 1
2E[|Ni|], at high probability, for each interval 4 ∈

H(Ni+1), L(4) is O(log n).

• Since there are Õ(log n) levels, the total search time is Õ(log n2).

Advanced Analysis for Query Time (A Sktech)

• For all i, |L(4i)| = NB(4), where NB(s) denotes the random variable

that is equal to the number of tails obtained before obtaining s heads.

– (Rough thought) A trapezoid is defined by at most 4 lines, and each

line corresponds to one direction (up, down, right, left).

– In up direction, it is equivalent to sequentialy draw a coin for lines

above q accordering to vertical distance to q, i.e., equal to NB(1).

– NB(1) = Õ(1) and NB(4) = 4NB(1) = Õ(1)

• Õ(log n)× Õ(1) = Õ(log n)

Construction Time

• For 1 ≤ i ≤ r, H(Nl) can be constructed in O(n2
i) time, where ni is the

number of lines in Ni.

• Constructing conflict lists takes O(ni ∗ ni−1) time

– For a fixed line Q ∈ Ni−1, the number of trapezoids in H(Ni) that are

intersected by Q is O(ni). (Zone theorem)

– Let S be any fixed line in Ni

– Locate Q ∩ S in H(Ni) by searching along S.

– Search along Q from Q ∩ S in both directly will find all trapezoids in

H(Ni) that are conflicted by Q

– It takes O(ni) time for Q, and thus O(ni ∗ ni−1) time for total

• Building descent(i, i− 1) takes O(ni ∗ ni−1) time

– It is equivalent to computing H(Ni)⊕H(Ni−1).

– H(Ni)⊕H(Ni−1) can be refined trivially from H(Ni)⊕G(Ni−1)

– H(Ni)⊕G(Ni−1) can be obtained by “drawing” lines in Ni−1 \Ni on

the top of H(Ni)

– We add to H(Ni) the lines in Ni \Ni−1, one at a time, in any oder.

– By the conflict information, adding a line takes O(ni) time

• The total time is
∑r

i=1O(ni ∗ ni).

• Since
∑r

i=1O(ni) = Õ(n), we have

r∑
i=1

O(ni ∗ ni) = O((

r∑
l=1

O(ni))
2) = Õ(n2).

Summary

Given a set N of n lines, a search structure for the arrangment formed by N

can be constructed in Õ(n2) time and space such that the point location query

can be conducted in Õ(log n) time.

