
Worst Case and Probabilistic Analysis
of the 2-Opt Algorithm for the TSP

Matthias Englert Heiko Röglin Berthold Vöcking
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Traveling Salesperson Problem

Traveling Salesperson Problem (TSP)

Input: weighted (complete) graph
G = (V ,E , d) with d : E → R.

Goal: Find Hamiltonian cycle of
minimum length.
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Theoretical Results

General TSP
I Strongly NP-hard.
I Not approximable within any polynomial

factor.

a b

c
a + b≥c

Metric TSP
I Strongly NP-hard.
I 3/2-approximation [Christofides, (1976)]
I APX-hard: lower bound of 220/219

[Papadimitriou, Vempala (2000)]

(x1, y1) (x2, y2)

√
(x1-x2)2+(y1-y2)2

d(P1, P2) =

Euclidean TSP
I Cities ⊂ Rd

I Strongly NP-hard (⇒ no FPTAS)
[Papadimitriou (1977)]

I PTAS exists [Arora (1996), Mitchell
(1996)].
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Experimental Results

Numerous experimental studies.
I TSPLIB contains “real-world” and random (Euclidean) instances.
I DIMACS Implementation Challenge [Johnson and McGeoch (2002)].

Some conclusions:

Worst-case results are often too pessimistic.

The PTAS is too slow on large scale instances.

The most successful algorithms (w. r. t. quality and running time) in
practice rely on local search.

Heiko Röglin (RWTH Aachen) Worst Case and Prob. Analysis of 2-Opt Oberwolfach 2007 4 / 21



Experimental Results

Numerous experimental studies.
I TSPLIB contains “real-world” and random (Euclidean) instances.
I DIMACS Implementation Challenge [Johnson and McGeoch (2002)].

Some conclusions:

Worst-case results are often too pessimistic.

The PTAS is too slow on large scale instances.

The most successful algorithms (w. r. t. quality and running time) in
practice rely on local search.
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2-Opt Heuristic

1 Start with an arbitrary tour.

2 Remove two edges from the tour.

3 Complete the tour by two other edges.

4 Repeat steps 2 and 3 until no local improvement is possible anymore.
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Heiko Röglin (RWTH Aachen) Worst Case and Prob. Analysis of 2-Opt Oberwolfach 2007 5 / 21



Why 2-Opt?

Experiments on Random Euclidean Instances
[Johnson and McGeoch (2002)]

Approximation Ratio

Christofides (for n ≤ 105): ≈ 1.1

2-Opt (for n ≤ 106): ≈ 1.05

Number of Local Improvements of 2-Opt

Greedy Starts: Probably O(n)

Random Starts: Probably O(n log n)
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Running time of 2-Opt: Known and New Results

General TSP Euclidean metric Manhattan metric

average

smoothed

worst-case 2Ω(n)

Average-case results: [Chandra, Karloff, Tovey (1999)].
Worst-case results: [Lueker (1975)].
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Heiko Röglin (RWTH Aachen) Worst Case and Prob. Analysis of 2-Opt Oberwolfach 2007 7 / 21



Lower Bound

1 Introduction

2 Lower Bound

3 Upper Bound

4 Extensions and Open Problems
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Lower Bound

Theorem

For every n ∈ N, there is a graph in the Euclidean plane with 8n vertices
on which 2-Opt can make 2n+3 − 14 steps.

Gadget G1 Gadget Gn

Possible States of a Gadget:
(Long,Long), (Long,Short), (Short,Long), (Short,Short)
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Lower Bound

(Long,Long) = 0

(Long,Short) = 1

(Short,Short) = 2

Gadget Gi is reset 2i−1 times to (Long,Long) = 0.
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Euclidean Embedding of the Gadgets
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Upper Bound

1 Introduction

2 Lower Bound

3 Upper Bound

4 Extensions and Open Problems
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Upper Bound

Theorem

Assume that n points are placed independently, uniformly at random in
the unit square [0, 1]2. The expected number of 2-Opt steps is bounded by
O(n4+1/3 · log n) (for every initial tour and every pivot rule).
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Simple Polynomial Bound

Theorem

The expected number of 2-Opt steps is bounded by O(n7 log2 n).

Proof.

Consider a 2-Opt step (e1, e2) → (e3, e4).

∆(e1, e2, e3, e4) = l(e1) + l(e2)− l(e3)− l(e4).

∆ = min
e1,e2,e3,e4

|∆(e1, e2, e3, e4)|.

# 2-Opt Steps ≤
√

2n

∆
.

Bound ∆ by a union bound: There are O(n4) different 2-Opt steps,
analyze ∆(e1, e2, e3, e4) for one of them. ⇒ ∆ ≈ 1/(n4 log n).
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Idea for Improvement

The bound is too pessimistic: Not every step yields the smallest
possible improvement ∆ ≈ 1/(n4 log n).

Consider two consecutive steps: They yield ∆ + ∆2 > 2∆.

Consider linked pair: (e1, e2) → (e3, e4) and (e3, e5) → (e6, e7).

Sequence of t consecutive steps, contains Ω(t) linked pairs:

S5S2 S3 S6 S7 S8S4S1 S9

(S1, S4) (S2, S5) (S6, S9)

∆Linked ≈ 1/(n3+1/3 log2/3 n).
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Extensions and Open Problems

1 Introduction

2 Lower Bound

3 Upper Bound

4 Extensions and Open Problems
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Smoothed Analysis

Smoothed Analysis

Each point i ∈ {1, . . . , n} is chosen independently according to a
probability density fi : [0, 1]2 → [0, φ].
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Heiko Röglin (RWTH Aachen) Worst Case and Prob. Analysis of 2-Opt Oberwolfach 2007 17 / 21



Smoothed Analysis

General TSP Euclidean metric Manhattan metric

average n3+o(1) Õ(n4.33) Õ(n4)

smoothed m · n1+o(1) · φ Õ(n4.33 · φ2.67) Õ(n4 · φ)

worst-case 2Ω(n) 2Ω(n) 2Ω(n)
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Approximation Ratio

Worst Case: O(log n)

Worst Case: Ω(log n/ log log n)

Average Case: O(1)

Smoothed: O(
√

φ)
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Open Problems

Worst-Case Analysis

Analyze the diameter of the 2-Opt state graph.

Analyze particular pivot rules like “largest improvement”.

Probabilistic Analysis

Show exact bounds on the running time of 2-Opt and k-Opt.

Show small constant approximation ratio for 2-Opt on random
Euclidean instances.
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The End

Thanks!
Questions?

Heiko Röglin (RWTH Aachen) Worst Case and Prob. Analysis of 2-Opt Oberwolfach 2007 21 / 21


	Introduction
	Lower Bound
	Upper Bound
	Extensions and Open Problems

