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@ Input: weighted (complete) graph
G=(V,E,d)withd: E—R.




@ Input: weighted (complete) graph
G=(V,E,d)withd: E—R.

@ Goal: Find Hamiltonian cycle of
minimum length.
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Theoretical Results

@ General TSP

» Strongly NP-hard.
» Not approximable within any polynomial

factor.
b e Metric TSP
A » Strongly NP-hard.
C » 3/2-approximation [Christofides, (1976)]
a4 b>c » APX-hard: lower bound of 220/219

[Papadimitriou, Vempala (2000)]

(@1,91)  (z2,y)® Euclidean TSP

» Cities C R
O——=0 » Strongly NP-hard (= no FPTAS)
d(Py, Pp) = [Papadimitriou (1977)]
V(@1-22)%+(y1-y2)>  » PTAS exists [Arora (1996), Mitchell
(1996)].
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Experimental Results

@ Numerous experimental studies.

» TSPLIB contains “real-world” and random (Euclidean) instances.
» DIMACS Implementation Challenge [Johnson and McGeoch (2002)].

Some conclusions:
@ Worst-case results are often too pessimistic.
@ The PTAS is too slow on large scale instances.

@ The most successful algorithms (w.r.t. quality and running time) in
practice rely on local search.
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@ Start with an arbitrary tour.
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@ Start with an arbitrary tour.

@ Remove two edges from the tour.

© Complete the tour by two other edges.



2-Opt Heuristic

© Start with an arbitrary tour.
@ Remove two edges from the tour.
© Complete the tour by two other edges.

@ Repeat steps 2 and 3 until no local improvement is possible anymore.
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Experiments on Random Euclidean Instances
[Johnson and McGeoch (2002)]

e Christofides (for n < 10%): ~ 1.1
e 2-Opt (for n < 10°): =~ 1.05




Experiments on Random Euclidean Instances
[Johnson and McGeoch (2002)]

e Christofides (for n < 10%): ~ 1.1
e 2-Opt (for n < 10°): =~ 1.05

o Greedy Starts: Probably O(n)
e Random Starts: Probably O(nlogn)




Running time of 2-Opt: Known and New Results

General TSP | Euclidean metric | Manhattan metric
average
smoothed
worst-case 28(n)

Average-case results: [Chandra, Karloff, Tovey (1999)].
Worst-case results: [Lueker (1975)].
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Running time of 2-Opt: Known and New Results

General TSP | Euclidean metric | Manhattan metric
average
smoothed
worst-case 2(n) 2%2(n) 2%(n)

Average-case results: [Chandra, Karloff, Tovey (1999)].
Worst-case results: [Lueker (1975)].

Our results.
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Running time of 2-Opt: Known and New Results

General TSP | Euclidean metric | Manhattan metric
O(n'0) O(n®)
average
smoothed
worst-case 2%(n) 282(n) 29Q(n)

Average-case results: [Chandra, Karloff, Tovey (1999)].
Worst-case results: [Lueker (1975)].
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Running time of 2-Opt: Known and New Results

General TSP Euclidean metric Manhattan metric

é(nlo) é(n6)
average p3+o(1) @ 433 @ n3-83 (”) n* O 35
(n*=%) [O(n*%)] (n*) [O(n*®)]
smoothed
worst-case 282(n) 2(n) 2Q(n)

Average-case results: [Chandra, Karloff, Tovey (1999)].
Worst-case results: [Lueker (1975)].

Our results.
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@ Introduction
© Lower Bound
© Upper Bound

@ Extensions and Open Problems



Lower Bound

Theorem

For every n € N, there is a graph in the Euclidean plane with 8n vertices
on which 2-Opt can make 2"T3 — 14 steps.

Gadget G Gadget G,
Possible States of a Gadget:
(Long,Long), (Long,Short), (Short,Long), (Short,Short)
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(Long,Long) = 0

(Long,Short) = 1

(Short,Short) = 2
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(Long,Short) = 1

(Short,Short) = 2
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Gadget G; is reset 2/~ times to (Long,Long) = 0.
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Assume that n points are placed independently, uniformly at random in
the unit square [0,1]?. The expected number of 2-Opt steps is bounded by
O(n**t1/3 .log n) (for every initial tour and every pivot rule).
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The expected number of 2-Opt steps is bounded by O(n” log® n).

e Consider a 2-Opt step (e1, ) — (€3, e4).
o A(er, e, e3,e4) = l(er) + I(e2) — I(e3) — I(ea).
°

A= min |A(e,e,es, es)l.
€1,€2,€3,64
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The expected number of 2-Opt steps is bounded by O(n log? n)

e Consider a 2-Opt step (e1, ) — (€3, e4).
o A(er, e, e3,e4) = l(er) + I(e2) — I(e3) — I(ea).
°
A= min |A(er, e, e3,€e4)l

€1,€2,€3,€4

# 2-Opt Steps < %
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Simple Polynomial Bound

Theorem

The expected number of 2-Opt steps is bounded by O(n” log® n).

Proof.
o Consider a 2-Opt step (e1, &2) — (e3, €a).
o Aler, e, e3,e1) = (e1) + I(e2) — I(e3) — I(ea).
°
A= min |A(e, e, es3 €)

€1,€2,€3,€4

2
# 2-Opt Steps < Q
A
@ Bound A by a union bound: There are O(n*) different 2-Opt steps,
analyze A(ey, €, €3, €4) for one of them. = A ~ 1/(n*log n).
O
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@ The bound is too pessimistic: Not every step yields the smallest
possible improvement A = 1/(n*log n).
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|dea for Improvement

@ The bound is too pessimistic: Not every step yields the smallest
possible improvement A = 1/(n*log n).

Consider two consecutive steps: They yield A + Ay > 2A.

Consider linked pair: (e1,e2) — (e3,es) and (e3, e5) — (es, €7).

Sequence of t consecutive steps, contains Q(t) linked pairs:

S1 Sy S3 S4 S5 S¢ Sr Ss Sy

N s

(S1,54) (S2,S5) (Se,59)

Heiko Roglin (RWTH Aachen) Worst Case and Prob. Analysis of 2-Opt Oberwolfach 2007 15 /21



|dea for Improvement

@ The bound is too pessimistic: Not every step yields the smallest
possible improvement A = 1/(n*log n).

Consider two consecutive steps: They yield A + Ay > 2A.

Consider linked pair: (e1,e2) — (e3,es) and (e3, e5) — (es, €7).

Sequence of t consecutive steps, contains Q(t) linked pairs:

S1 Sy S3 S4 S5 S¢ Sr Ss Sy

N s

(S1,54) (S2,S5) (Se,59)

ALlnked ~ 1/( 3+1/3 |Og2/3 )
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Each point i € {1,...,n} is chosen independently according to a
probability density 7 : [0, 1]> — [0, ¢].




Each point i € {1,...,n} is chosen independently according to a
probability density 7 : [0, 1]> — [0, ¢].
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General TSP | Euclidean metric | Manhattan metric
average n3te() O(n*33) O(n*)
smoothed || m - ntto(D) . | O(n*33. $207) O(n* - ¢)
worst-case 252(n) 252(n) 292(n)




e Worst Case: O(log n)
e Worst Case: Q(log n/ loglog n)



e Worst Case: O(log n)
e Worst Case: Q(log n/ loglog n)
@ Average Case: O(1)



e Worst Case: O(log n)

e Worst Case: Q(log n/ loglog n)
@ Average Case: O(1)

e Smoothed: O(\/¢)



Open Problems

Worst-Case Analysis

@ Analyze the diameter of the 2-Opt state graph.

@ Analyze particular pivot rules like “largest improvement”.
Probabilistic Analysis

@ Show exact bounds on the running time of 2-Opt and k-Opt.

@ Show small constant approximation ratio for 2-Opt on random
Euclidean instances.
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Thanks!
Questions?
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