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Minimum-Cost Flow Network

flow network: G = (V ,E )
balance values: b : V → Z
costs: c : E → R≥0

capacities: u : E → N
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flow: f : E → R≥0

capacity constraints: ∀e ∈ E : f (e) ≤ u(e)
Kirchhoff’s law: ∀v ∈ V : b(v) = out(v)− in(v)

Goal: minflow f
∑

e∈E f (e) · c(e)
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Short History

Pseudo-Polynomial Algorithms:

Out-of-Kilter algorithm [Minty 60, Fulkerson 61]
Cycle Canceling algorithm
Successive Shortest Path algorithm

Polynomial Time Algorithms:

Capacity Scaling algorithm [Edmonds and Karp 72]
Cost Scaling algorithm

Strongly Polynomial Algorithms:

Tardos’ algorithm [Tardos 85]
Minimum-Mean Cycle Canceling algorithm
Network Simplex algorithm
Enhanced Capacity Scaling algorithm [Orlin 93]
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Theory vs. Practice

Theory Practice

Fastest algorithm:
Enhanced Capacity Scaling

Fastest algorithm:
Network Simplex

Successive Shortest Path:
exponential in worst case

Minimum-Mean Cycle Canceling:
strongly polynomial

Successive Shortest Path

much faster than

Minimum-Mean Cycle Canceling
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Reason for Gap between Theory and Practice

Worst-case complexity is too pessimistic!

There are artificial worst-case inputs. These
inputs, however, do not occur in practice.

This phenomenon occurs also for many other
problems and algorithms.

Adversary

“I will
trick your
algo-
rithm!”

Goal

Find a more realistic performance measure that is not just based
on the worst case.

6 / 17



Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Reason for Gap between Theory and Practice

Worst-case complexity is too pessimistic!

There are artificial worst-case inputs. These
inputs, however, do not occur in practice.

This phenomenon occurs also for many other
problems and algorithms.

Adversary

“I will
trick your
algo-
rithm!”

Goal

Find a more realistic performance measure that is not just based
on the worst case.

6 / 17



Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Reason for Gap between Theory and Practice

Worst-case complexity is too pessimistic!

There are artificial worst-case inputs. These
inputs, however, do not occur in practice.

This phenomenon occurs also for many other
problems and algorithms.

Adversary

“I will
trick your
algo-
rithm!”

Goal

Find a more realistic performance measure that is not just based
on the worst case.

6 / 17



Introduction
Analysis

Minimum-Cost Flow Problem
Smoothed Analysis
Successive Shortest Path Algorithm

Smoothed Analysis

Observation: In worst-case analysis, the adversary is too powerful.
Idea: Let’s weaken him!

Input model:

Adversarial choice of flow network

Adversarial real arc capacities ue and node balance values bv

Adversarial densities fe : [0, 1]→ [0, φ]

Arc costs ce independently drawn according to fe

Randomness models, e.g., measurement errors, numerical
imprecision, rounding, . . .
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Smoothed Analysis

Worst-case Analysis: maxce T

Smoothed Analysis: maxfe E [T ]

φ = 1: Average-case analysis
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φ→∞: Worst-case analysis
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Initial Transformation

Successive Shortest Path algorithm
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Augmenting Steps

Successive Shortest Path algorithm
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path length: 3, augmenting flow value: 2
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Augmenting Steps

Successive Shortest Path algorithm
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Resulting Flow

Successive Shortest Path algorithm
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Results

Theorem (Upper Bound)

In expectation, the SSP algorithm requires O(mnφ) iterations and
has a running time of O(mnφ(m + n log n)).

Theorem (Lower Bound)

There are smoothed instances on which the SSP algorithm requires
Ω(m ·min {n, φ} · φ) iterations in expectation.

upper bound tight for φ = Ω(n)
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Useful Properties

Lemma

The distances from the source to any node increase monotonically.

0
value

cost

initial solution: empty flow

Lemma

Every intermediate flow is optimal for its flow value.
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Counting the Number of Slopes

slope = augmenting path length ∈ (0, n]

=
k⋃

`=1

I`, |I`| = n
k

0 n

=⇒ E[#slopes] =
k∑̀
=1

E[#slopes ∈ I`]

≈
k∑̀
=1

Pr [∃slope ∈ I`]

= O(mnφ)

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)
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Flow Reconstruction

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

d - slope threshold

F ?- flow at breakpoint

P - next augmenting path

e - empty arc of P in Gf ?

cost

value0

∃slope ∈ (d , d + ε] ⇐⇒ c(P) ∈ (d , d + ε]

Goal: Reconstruct F ? and P without knowing ce
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Principle of Deferred Decisions

Main Lemma

∀d ≥ 0 : ∀ε ≥ 0 : Pr [∃slope ∈ (d , d + ε]] = O(mφε)

Phase 1: Reveal all ce′ for e ′ 6= e.
Assume this suffices to uniquely iden-
tify F ? and P.

Phase 2:

Pr [c(P) ∈ (d , d + ε]]

= Pr [c(e) ∈ (z , z + ε]] ≤ φε,

where z is fixed if ce′ for e ′ 6= e is fixed.

≤ d

≤ d

> d

> d

d

c(P )

cost

F ?

value0
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Flow Reconstruction

Case 1: e forward arc
Set c ′(e) = 1 and for all e ′ 6= e set c ′(e ′) = c(e ′).
Run SSP with modified costs c ′.

F ? is the same for c and c ′
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