Institut für Informatik
Prof. Dr. Heiko Röglin
Clemens Rösner

Problem Set 3

Problem 1

Let an instance of the knapsack problem with capacity W, weights w_{1}, \ldots, w_{n}, and profits p_{1}, \ldots, p_{n} from the interval $[0,1]$ be given. Recall the definition of the winner gap:

$$
\Delta:=p^{\top} x^{*}-p^{\top} x^{* *}
$$

where

$$
\begin{aligned}
& x^{*}:=\arg \max \left\{p^{\top} x \mid x \in\{0,1\}^{n} \text { and } w^{\top} x \leq W\right\} \text { and } \\
& x^{* *}:=\arg \max \left\{p^{\top} x \mid x \in\{0,1\}^{n} \text { and } w^{\top} x \leq W \text { and } x \neq x^{*}\right\} .
\end{aligned}
$$

We assume that there are at least two feasible solutions such that Δ is well-defined. Assume that you are given the information that $\Delta>n 2^{-\ell}$ for some $\ell \in \mathbb{N}$. In what respect does this knowledge help you to find an optimal solution quickly?

Hint: Think about how rounding the profits influences the optimal solution of the problem. Remember that it is possible to solve the integer version of the knapsack problem in time $O(n P)$, where P is the sum of all profits.

Problem 2

Let I be an instance of the knapsack problem as usual, but now you are allowed to pack each item up to k times. How can this problem be reduced to an instance of the classical knapsack problem with $O(n \cdot \log k)$ many items?

Problem 3

Consider a modification of the knapsack problem where there are multiple profits for each item. This means that instead of one vector $p \in \mathbb{R}^{n}$ describing the profits there are multiple vectors $p^{1} \ldots p^{k}$ and you want to maximize all $\left(p^{i}\right)^{\top} x$. Is it possible to generalize the Nemhauser-Ullmann algorithm to find the set of Pareto-optimal solutions for this modified problem?

