Discrete and Computational Geometry, SS 14 Exercise Sheet "8": Brunn-Minkowski Inequality University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Tuesday June 17th, 14:00 pm. There will be a letterbox in the LBH building, close to Room E01.
- You may work in groups of at most two participants.
- Please contact Hilko Delonge, hilko.delonge@uni-bonn.de, if you want to participate and have not yet signed up for one of the exercise groups.
- If you are not yet subscribed to the mailing list, please do so at https://lists.iai.uni-bonn.de/mailman/listinfo.cgi/lc-dcgeom

Exercise 22: Inequalities and Convexity

1. Show that from $x p^{4} \geq m p^{2}-3 n p$ and $p=\frac{4 n}{m}$ we conlude $x \geq \frac{1}{64} \frac{m^{3}}{n^{2}}$ (Proof of Theorem 15).
2. Show that from $\frac{1}{64} \frac{|E|^{3}}{m^{2}}-m \leq \operatorname{cr}(G) \leq\binom{ n}{2}$ we conclude $|E| \in O\left(n^{\frac{2}{3}} m^{\frac{2}{3}}+m\right)$ (Proof of Theoerm 13).
3. Show that the set $C^{\prime}=\bigcup_{t \in[0,1]}\{t\} \times\{(1-t) A \oplus t B\}$ for convex sets A and B is also convex (Proof of Lemma 34).

Exercise 23: Concavity of volume functions
(4 Points)
Let \oplus denote the Minkowski sum operator.
Let $A \subset \mathbb{R}^{d}$ denote a single point and $B \subset \mathbb{R}^{d}$ denote a unit hypercube.
a) Give the formula of the volume function $v(t)=\operatorname{vol}((1-t) A \oplus t B)$.
b) Show that $v(t)^{\beta}$ is not concave on $[0,1]$ for $\beta>\frac{1}{d}$.

Exercise 24: Volume of Minkowski sums

1. Give a short proof of the 1-dimensional Brunn-Minkowski inequality:

$$
\operatorname{vol}(A \oplus B) \geq \operatorname{vol}(A)+\operatorname{vol}(B)
$$

for nonempty measurable $A, B \subset \mathbb{R}$.
2. Prove or disprove: nonempty measurable sets $A, B \subset \mathbb{R}$ satisfy:

$$
\operatorname{vol}(A)+\operatorname{vol}(B) \geq \operatorname{vol}(A \oplus B)
$$

