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The Geometric Dilation of Finite Point Sets1

Annette Ebbers-Baumann,2 Ansgar Grüne,2 and Rolf Klein2

Abstract. Let G be an embedded planar graph whose edges may be curves. For two arbitrary points of
G, we can compare the length of the shortest path in G connecting them against their Euclidean distance.
The supremum of all these ratios is called the geometric dilation of G. Given a finite point set, we would
like to know the smallest possible dilation of any graph that contains the given points. In this paper we prove
that a dilation of 1.678 is always sufficient, and that π/2 = 1.570 . . . is sometimes necessary in order to
accommodate a finite set of points.

Key Words. Computational geometry, Detour, Dilation, Graph, Network, Spanner, Stretch factor, Trans-
portation network.

1. Introduction. Transportation networks like waterways, railroad systems, or urban
street systems can be modeled by a graph G in the plane whose edges are piecewise
smooth curves that do not intersect, except at vertices of G.3

The quality of G as a means of transport can be measured in the following way. For
any two points, p and q , of G, let ξG(p, q) denote a shortest path in G from p to q. Then
the dilation of G is defined by

δ(G) := sup
p,q∈G, p �=q

|ξG(p, q)|
|pq| .(1)

The value of δ(G)measures the longest possible detour that results from using G instead
of moving as the crow flies.

The above definition of δ(G) does not specify which points p, q of G to consider.
There are two alternatives, corresponding to different applications.

Access to a railroad system is only possible at stations. In such a model we would
use, as measure of quality, the graph-theoretic dilation, where only the vertices p, q of
G are considered in definition (1). Here, only the lengths of the edges of G are of interest
but not their geometric shapes.

Along urban streets, however, houses are densely distributed. Here it makes sense to
include all points p, q of G in definition (1), vertices and interior edge points alike. This
gives rise to the definition of the geometric dilation of graph G.

1 A preliminary version of this paper was presented at ISAAC 2003. The third author was partially supported
by DFG Grant KL 655/14-1.
2 Universität Bonn, Institut für Informatik I, D-53117 Bonn, Germany. {ebbers,gruene,klein}@cs.uni-bonn.de.
3 That is, we do not allow bridges at this stage, but it would, in principle, be possible to enlarge our model.
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The graph-theoretic dilation has been extensively studied in the literature on spanners
(see, e.g., Eppstein’s chapter in the Handbook of Computational Geometry [6] for a
survey). One can efficiently construct spanners of bounded dilation and degree, whose
weight is close to that of the minimum spanning tree, see [3]. Also, lower time bounds
are known, see [4].

In contrast to this, the geometric dilation is a rather novel concept in computational
geometry. So far there are only three types of results. Icking et al. [10] and Aichholzer
et al. [2] have provided upper bounds to the geometric dilation of planar curves in
terms of their oscillation width, and Ebbers-Baumann et al. [5], Agarwal et al. [1], and
Langerman et al. [13] have shown how to compute efficiently the geometric dilation of a
given polygonal chain or cycle over n edges. Recently, Grüne et al. [7], [8] have given an
algorithm for the related problem of computing the detour of a simple polygon. Besides
this the geometric dilation was examined in knot theory under the notion of distortion,
see, e.g., [11].

In addition to computing the dilation of given graphs, it is quite interesting to construct
graphs of low dilation that contain a given finite point set.4 In the case of graph-theoretic
dilation the optimum solution must be a triangulation, since straight edges work best,
and adding edges without creating new vertices never hurts. Yet, how to compute the
triangulation of minimum graph-theoretic dilation over a given vertex set efficiently
seems not to be known. It is not even clear what maximum value the lowest possible
dilation over all finite point sets can attain (see Problems 8 and 9 in [6]).

In this paper we address the corresponding question for the geometric dilation. Given
a finite point set P , we are interested in the smallest possible geometric dilation of any
finite planar graph that contains all points of P , i.e., in the value of

	(P) := inf
P⊂G, G finite

δ(G).

Note that, due to the definition of the geometric dilation δ(G), the points of P may now
lie also in the interior of edges. We call 	(P) the geometric dilation of the point set P .
Even for a set P of size 3, computing 	(P) is a non-trivial task.

Our main interest in this paper is in the maximal value	(P) can attain, for an arbitrary
finite point set P . We prove the following results:

1. There exist finite point sets whose geometric dilation is as large as π/2 = 1.570 . . . .
2. No finite point set can have a dilation larger than 1.678.

The first result is proven in Section 2, using Cauchy’s surface area formula for ge-
ometric graphs with cycles and further results for trees. The second result is shown in
Section 3. To prove this upper bound we construct a periodic geometric graph G∞ of
dilation 1.6778 . . . that covers the plane, such that each finite point set is contained in
a slightly perturbed finite part G of a scaled copy of G∞. While this construction is
certainly not efficient—the size of G depends on the rational coordinates of our input
set—it serves well in establishing the upper bound.

4 Observe that the complete graph over P does not solve this problem because the edge crossings would
generate new vertices that must also be considered in definition (1).
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Fig. 1. The breadth of a convex curve is at least its partition distance.

2. A Lower Bound to the Geometric Dilation of Point Sets. In this section we show
that some point sets can only be embedded in graphs of large geometric dilation. Our
main result is the following.

THEOREM 1. Let Pn denote the vertex set of the regular n-gon on the unit circle. Then
we have 	(Pn) = π/2 = 1.570 . . . for each n ≥ 5.

In order to prove Theorem 1, we will show that neither any graph with cycles nor a
tree containing the given point set has a dilation smaller than π/2. As preparation we
prove the following lemma.

LEMMA 1. Any closed curve C has dilation at least π/2.

PROOF. First, let C be a closed convex curve, and let δ denote its dilation. For each
direction α, there is a unique pair of points (pα, qα), called a partition pair, that halves
the perimeter |C | of C ; see Figure 1. We call

h(α) = |pαqα|
the partition distance at angle α. Let b(α) be the breadth of C in orientation α. Clearly,
b(α) ≥ h(α) holds. Moreover, we have (|C |/2)/h(α) ≤ δ, by definition of the dilation.

Thus, by Cauchy’s surface area formula,

|C | =
∫ π

0
b(α) dα ≥

∫ π

0
h(α) dα ≥

∫ π

0

|C |/2
δ

dα = π |C |
2δ

,

hence δ ≥ π/2.
Next, let C be a closed non-convex curve. Again, for each orientation α there is a

partition pair (pα, qα) of C . This can be shown by a continuity argument: Clearly, there
is a partition pair (pβ, qβ) for some orientation β; as we let these points move along C
in clockwise direction at equal speed, each will eventually reach its partner’s position.
During this process, each possible orientation has been attained. Thus, let hC(α) now
denote the smallest partition pair distance in direction α , and let ch(C) denote the convex
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hull of C . Then |C | ≥ |ch(C)| holds, and we have bch(C)(α) ≥ hC(α). So, the proof for
the convex case carries over.

Recently we learned that a different proof of the preceding result was independently
given in [11] by Kusner and Sullivan.

Now, let G be an arbitrary geometric graph that contains a bounded face. In this case
we provide the following result.

THEOREM 2. Each graph containing a bounded face has dilation at least π/2.

PROOF. Let G be a finite geometric graph in the plane that contains a bounded face.
Then there exists at least one cycle in G. Let C be the shortest cycle in G. Then, for any
two points, p and q of C , a shortest path ξG(p, q) from p to q in G is a subset of C .

Together with Lemma 1 on the dilation of closed curves Theorem 2 follows
directly.

It remains to show that no graph without cycles, i.e., a tree, can provide a smaller
dilation for embedding the vertex set Pn of a regular n-gon with n ≥ 5.

LEMMA 2. Let tree T contain the point set Pn , n ≥ 5. Then δ(T ) ≥ π/2 holds.

PROOF. Assume that tree T contains Pn , and that δ(T ) < π/2 holds. Then, if p, q are
two neighboring points of Pn , the unique path ξ(p, q) in T connecting them is of length
at most δ(T ) · |pq|, where

|pq| = 2 sin
(π

n

)
≤ 2 sin

(π
5

)
= 1.175 . . . ,

see Figure 2. Therefore this shortest path ξ(p, q)must be contained in ellipse E(p, q) :=
{z| |pz|+|zq| ≤ (π/2)|pq|}, i.e., an ellipse with foci p, q and eccentricity e = 1/(π/2).

g k

p q

E(p, q)

g = π
2
|pq|
2

11

π
n

π
n

Fig. 2. The path between neighboring points is contained in their ellipse.
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Fig. 3. All paths together, C concatenated with ξ(pn, p1), form a cycle.

In such an ellipse E(p, q), per definition, the sum of distances from each point on
the boundary of E(p, q) to the foci, p and q, equals

|pq| · π
2
≤ sin

(π
n

)
· π ≤ sin

(π
5

)
· π = 1.846 . . . .

On the other hand, because both p and q lie on the unit circle, the sum of their distances
from the circle’s center equals 2. Therefore no ellipse E(p, q) can contain the unit circle’s
center.

Now we consider the arrangement of all ellipses E(pi , pi+1) of neighboring points,
as depicted in Figure 3, and assume that the points are labeled p1, p2, . . . , pn in coun-
terclockwise order. The concatenation

C = ξ(p1, p2)ξ(p2, p3) · · · ξ(pn−1, pn)

is a (possibly non-simple) path in T that is contained in, and visits, all ellipses associated
with these point pairs. Together with ξ(pn, p1), which must be contained in the ellipse
of pn and p1, C forms a closed path in T that encircles the center of the unit circle and
is, thus, not contractible, contradicting the fact that T is a tree.

Now we can prove Theorem 1.

PROOF. Clearly, for each n we have	(Pn) ≤ π/2, because this is the dilation of the unit
circle. Let n ≥ 5. By Theorem 2 any graph containing a cycle has a dilation δ(G) ≥ π/2.
On the other hand, according to Lemma 2, no tree containing Pn can provide a smaller
dilation. So we have shown that no graph containing all points of Pn with n ≥ 5 can
have a dilation smaller than π/2.

The arguments contained in the proof of Lemma 2 can also be used in proving the
following result.

COROLLARY 1. Let C be a closed curve, and let Pn be a set of n points evenly placed
on C . Then the dilation of any tree containing Pn tends to infinity, as n grows.
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We point out that Theorem 1 does not hold for small values of n. Trivially,	(P2) = 1
holds. For n = 3 and n = 4 we have the results stated in Corollaries 2 and 3 below. To
prove those we first need the following technical lemma.

LEMMA 3. Let v be a vertex of G where two edges meet at angle α, that is, the tangents
to the piecewise smooth edges in the common vertex v form an angle α. Then δ(G) ≥
1/sin(α/2) holds.

PROOF. Let c1(t), c2(t) be the unit speed parameterizations of the two edges, satisfying
c1(0) = c2(0) = v. Because all edges are piecewise smooth, c1 and c2 are continuously
differentiable in an ε-disk centered in v. Therefore we obtain the MacLaurin expansions
of c1, c2 in v as

c1(t) = ċ1(0+)t + O(t2), c2(t) = ċ2(0+)t + O(t2).

Thus, the dilation δ(G) satisfies the following inequality:

δ(G) ≥ lim
t→0

ξG(c1(t), c2(t))

|c1(t)− c2(t)| = lim
t→0

ξG(c1(t), v)+ ξG(v, c2(t))

|c1(t)− c2(t)|

= lim
t→0

2t

|ċ1(0+)t − ċ2(0+)t + O(t2)|

= lim
t→0

2

|ċ1(0+)− ċ2(0+)+ O(t)|

= 2

|ċ1(0+)− ċ2(0+)| .

Simple trigonometry in the equilateral triangle �(v, ċ1(0+), ċ2(0+)), see Figure 4,
yields

sin
(α

2

)
= |ċ1(0+)− ċ2(0+)|

2
,

which proves the claim.

ċ1(0) ċ2(0)

α
2

α
2

v

e1

e2

11

|ċ1(0) − ċ2(0)|

Fig. 4. The angle between tangents of edges in a vertex provides a lower bound on the dilation.
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COROLLARY 2. 	(P3) = 2/
√

3 = 1.157 . . . .

PROOF. We can achieve the bound 	(P3) = 2/
√

3 by the Steiner tree on P3, i.e., by
connecting the center of the unit circle by a straight segment to each point of P3. These
segments meet at a 120◦ angle. By Lemma 3, this causes a local dilation of 1/sin (α/2).
In our case, no bigger value than 1/sin (60◦) = 2/

√
3 can occur.

In order to prove that no graph G containing P3 can have a smaller dilation we need
only consider the following cases. G cannot contain a cycle, because any cycle has a
dilation of at least π/2 according to Lemma 1. Therefore G has to be either a simple
chain or a tree with a vertex of degree at least 3. If G is a simple chain passing through
the three points in the order p, q, r , then its dilation is at least (|pq| + |qr |)/|pr | = 2.
Otherwise, G is a tree with a vertex of degree at least 3. However, then we can be sure
that its dilation is at least 2/

√
3, by the angle argument of Lemma 3.

COROLLARY 3. 	(P4) =
√

2 = 1.414 . . . .

PROOF. Let p1, . . . , p4 be the points of P4 in counterclockwise order. The dilation
	(P4) =

√
2 is obtained by the same type of Steiner tree as above, that is the Steiner

tree with one Steiner point s in the center of the unit circle, connected to each pi by
a straight edge; see Figure 5(i). By Lemma 3, the dilation of this tree is not less than
1/sin (45◦) = √2, and it is easy to show that no greater value than

√
2 occurs.

It remains to show that there is no graph G, having arbitrary, piecewise smooth
edges, embedding P4 with a smaller dilation. Let us assume we have such a graph G.
By Lemma 1 we know that G cannot contain any cycle. Consider the shortest paths
ξG(p1, p3) and ξG(p2, p4). If they do not intersect, at least one of them is longer than
2
√

2, see Figure 5(ii), implying δ(G) >
√

2.
Otherwise there is at least one point of intersection s ∈ ξG(p1, p3) ∩ ξG(p2, p4)

like that depicted in Figure 5(iii). Because G is a tree, for all pi , pj ∈ P4, i �= j , the
shortest path connecting pi and pj visits s: ξG(pi , pj ) = ξG(pi , s)⊕ ξG(s, pj ). We use
this property to complete the proof by showing that max{|ξG(pi , pi+1)|} ≥ 2, where, of
course, p4+1 denotes p1.

First, we notice that replacing each ξG(pi , s) by a straight line segment like in Fig-
ure 5(iv) does not increase the maximal path length between neighboring points. Now,
if s is not located at the unit circle’s center, it lies outside of an ellipse E2(pi , pi+1) :=

p1

p3

p4

s

p2

p1

p3

p4

p2

p1

p3

p4

s

p2

p1

p3

p4

s

p2

1 1

11

√
2

ξG(p2, p4)

ξG(p1, p3)

ξG(p2, p4)

ξG(p1, p3)

(i) (ii) (iii) (iv)

Fig. 5. The Steiner tree of P4 and the proof of it being optimal.
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{z | |pi z| + |pi+1z| ≤ 2}. It follows that

δ(G) ≥ max{|ξG(pi , pi+1)|}√
2

≥ max{|pi s| + |pi+1s|}√
2

≥
√

2.

3. An Upper Bound to the Geometric Dilation. In this section we show that each
finite point set can be embedded in a finite graph of geometric dilation at most 1.678.
More precisely, we prove the following theorem.

THEOREM 3. There is a periodic plane covering graph G∞ of dilation 1.67784 . . . such
that each finite set of points is contained in a slightly perturbed, finite part G of a scaled
copy of G∞.

We proceed in three steps. First we state a simple yet important technical result in
Lemma 4. Then the proof of Theorem 3 starts with the construction of a certain cycle,
C . Graph G∞ will then be obtained by taking the hexagonal grid of unit length, and
replacing each vertex with a copy of C . The proof will be concluded by showing how to
embed arbitrary finite point sets in G∞, and by extracting the finite part G.

In determining the geometric dilation of graphs the following lemma is useful; it was
first applied to chains in [5]. Observe that an analogous result for the graph-theoretic
dilation does not hold.

LEMMA 4. The geometric dilation of a graph is always attained by two co-visible
points.

PROOF. Assume that δ(G) is attained by points p, q that are not co-visible and have a
minimal Euclidean distance, among all such pairs. Then the line segment pq contains a
point r of G in its interior. Hence, we obtain

δ(G) = ξG(p, q)

|pq| ≤ ξG(p, r)+ ξG(r, q)

|pr | + |rq|

≤ max

(
ξG(p, r)

|pr | ,
ξG(r, q)

|pq|
)

≤ δ(G)

by using in step 2 the well-known inequality (a + b)/(c + d) ≤ max(a/c, b/d), for
a, b, c, d > 0. Thus, the dilation of G is also attained by one of the pairs (p, q), (q, r),
a contradiction.

Now we give the proof of Theorem 3.

PROOF. First we construct a closed cycle, C , that will then be used in building a periodic
graph, G∞, of dilation δ(G) = 1.67784 . . . . The cycle C is a closed curve of constant
partition pair distance and somewhat related to the (equi-width) Rouleau triangle. In
detail, C is defined as follows. We draw the positive X -axis and two more half-lines
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Fig. 6. The cycle C and the essentials of its construction.

starting from the origin at angles of 120◦ and −120◦, correspondingly. Next we fix two
numbers, 0 < c < b < 0.5, that will be specified later, when optimizing the bound.
Depending on b and c we draw three circles, each of which touches two of the three
half-lines at the distance b1 = (b − c)/2 from the origin; see Figure 6.

For their radius, r , and for the distance, x , from their centers to the origin we obtain

x

2
= x cos 60◦ = b1 = b − c

2
,

x
√

3

2
= x sin 60◦ = r,

which implies x = b − c and r = (√3/2)(b − c).
Now we consider the line segment, L , of length b + c from (−c, 0) to (b, 0), and

imagine that its midpoint is glued to the upper circle. As this circle rotates clockwise by
60◦, the right endpoint of L describes a circular arc of length R π/3, where

R =
√

r2 + b2
2 =

√
3
4 (b − c)2 + 1

4 (b + c)2

=
√

b2 − bc + c2.

After this rotation, line segment L is unglued from the upper circle, and glued to the
left circle instead, that now rotates clockwise by 60◦, and so on. This results in a cycle
C that consists of six circular arcs of length Rπ/3 each.

By construction, each pair of endpoints of the rotating line segment is a partition pair
of C , because the endpoints of C are always moving with identical speed. Moreover,
each such pair attains the maximum dilation. The argumentation of Lemmata 1 and 2
of [5] shows that there must exist a pair of points attaining maximum dilation which
is either a partition pair or contains at least one of the three non-convex corners of C .
Finally, Maple analysis shows that the dilation of the partition pairs is dominating.
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x

R
120◦

D3

x

R

H

c

c

D2

Fig. 7. A cell of the periodic graph G∞.

So, we have

D1 := δ(C) = πR

b + c
.

Now we construct a periodic graph G∞ that covers the plane. This graph is obtained
by centering rotated copies of cycle C at the vertices of the regular hexagonal grid5 of
unit edge length, and cutting off those parts of the axes contained in those copies; see
Figure 7.

Thanks to Lemma 4, we need only compute the dilation of the two faces occurring in
G∞, which are the cycle C and the boundary of the “dodecagonal” face. On the latter,
two candidate partition pairs of points exist that might attain maximum dilation. In the
vertical direction we have a pair whose dilation equals

D2 = 2πR + 3(1− 2b)√
3

.

Observe that the numerator equals three times one-third of the perimeter of cycle C ,
plus three times the length of a shortened unit edge, whereas the denominator measures
the height of the hexagonal cell. The other candidate pair is obtained by intersecting,
with the copies of C , the line H connecting the centers of two generating circles; see
Figure 7. Since the diagonal of the hexagonal cell is of length 2, the distance between
these intersection points equals

2(
√

x2 + 1− 2x cos 120◦ − R),

by the law of cosines. This leads to

D3 = 2πR + 3(1− 2b)

2(
√

x2 + x + 1− R)
.

5 Without this refinement, the plain hexagonal grid would have a dilation of
√

3 = 1.7320 . . . .
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Further analysis shows that the maximum of D1, D2, D3 can be minimized to

D1 = D2 = D3 = 1.6778 . . .

by putting

c = 0.1248 . . . and b = 0.1939 . . .

and that for these values the maximum dilation of C and the “dodecagonal” cycle is
indeed attained by the examined candidate pairs.

Now let us assume that we are given a finite set of points,

P = {(α1, β1), . . . , (αn, βn)},
with real-valued coordinates αi , βi that must be embedded in a graph of low dilation. We
want to scale our modified hexagonal grid G∞ in such a way that a small perturbation,
that affects the dilation of the grid only by an arbitrarily small amount, suffices to
accommodate all points of P .

To this end, let γ be the scaling factor for the grid. Then the centers of the horizontal
edges we use to embed P have a distance of 3γ in the horizontal direction, and a distance
of
√

3γ in the vertical direction; see Figure 8. Moreover, each horizontal edge is of length
(1− 2b)γ , where b is one of the two radii defining cycle C ; see also Figure 6.

Ideally, we would like to place each point of P at the center of some horizontal edge.
In general, this is not possible, but the following approximation would be good enough.
Let η > 0 be some given error bound. We want

1. each X -coordinate αi to be closer to an integer multiple of 3γ than ηγ , and
2. each Y -coordinate βi to be closer to an integer multiple of

√
3γ than ηγ .

Indeed, the first condition ensures that point (αi , βi ) lies almost on the centerline of some
column of horizontal edges, that is, it provides a restriction to the horizontal deviation of

 b

0

 γ

(1−2 b) γ

2√3 γ

 4√3 γ

 γ

 3γ  6γ

Fig. 8. By Dirichlet’s theorem, with slight perturbations on the part of the horizontal edges, G∞ can embed
any finite real point set with dilation 1.678. A finite graph G ⊂ G∞ with the same dilation can be obtained by
the displayed hexagonal pruning method.
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the points. Whereas the second requirement guarantees that the point lies almost on some
horizontal edge of this column by restricting its vertical deviation. In both cases the error
is arbitrarily small relative to the grid size, γ . To visualize this have a look at Figure 8: the
periodic infinite graph G∞ can be constructed such that the n points in the plane to embed
lie “close” to the intersection points of the vertical dashed lines X = 0,±3γ,±6γ, . . .
with the horizontal edges of G they cross. This means that the increase in dilation which
might incur by bending n horizontal edges, in order to accommodate the points, can be
kept arbitrarily small.

Once the points reside on the modified, infinite grid G∞ we can cut out a bounded
part G containing all embedded points and, for two arbitrary grid points, a short-
est path connecting them. If this cut has a hexagonal shape that runs close to the
vertex-substituting cycles C , as depicted in Figure 8, the pruning does not increase the
dilation.

It remains to prove that the above requirements can indeed be met. We reformulate
them as follows. For the given points and the given bound η we want to find integers Ai

and Bi and some scaling factor γ such that∣∣∣∣αi

3

1

γ
− Ai

∣∣∣∣ ≤ η

3
,

∣∣∣∣ βi√
3

1

γ
− Bi

∣∣∣∣ ≤ η√
3

holds. This is possible due to the following well-known approximation result by Dirichlet,
see, e.g., [14].

THEOREM 4. Let ρ1, . . . , ρn be real numbers, and let ε > 0. Then there exist a natural
number q and integers D1, . . . , Dn satisfying

|ρi q − Di | ≤ 1

q1/n
< ε.

This concludes the proof of Theorem 3 and, thus, of the main result of this section.

4. Concluding Remarks. In this paper we have, for the first time, studied the geo-
metric dilation of geometric graphs. We have introduced the notion of the geometric
dilation,	(P), of a finite set of points, P , as the minimal dilation of all finite graphs that
contain P . We have shown that the vertices of the regular n-gon, n ≥ 5, have dilation
π/2 = 1.570 . . ., and that no finite point set has a dilation greater than 1.678.

These results give rise to many further questions. How can we compute the geometric
dilation of a given point set? How costly (in weight and computing time) is the construc-
tion of a geometric graph attaining (or approximating)	(P)? What is the precise value
of

	 := sup
P finite

	(P)?

(We conjecture	 > π/2.) Finally, what happens if we extend this definition to non-finite
sets, e.g., simple geometric shapes?
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