Geometric Dilation of Closed Planar Curves: A New Lower Bound

Annette Ebbers-Baumann, Ansgar Grüne, Rolf Klein

Institut für Informatik I Universität Bonn, Germany

Outline

- Geometric Dilation
- Motivation
- Non-Convex Cycles
- Partition Pairs
- Breadth Measures
- Central Symmetrization
- Lower Bound
- Results

- ullet for embedded planar graph G
- $p, q \in C$
- $d_C(p,q) := \text{length of shortest}$ path on C connecting p, q
- |pq| = Euclidean distance
- Dilation $\delta_C(p,q) := d_C(p,q)/|pq|$
- Geometric Dilation $\delta(C) := \sup_{p,q \in C, p \neq q} \delta_C(p,q)$

- here: only for cycle $C \subset \mathbb{R}^2$
- $p, q \in C$
- $d_C(p,q) := \text{length of shortest}$ path on C connecting p, q
- |pq| = Euclidean distance
- Dilation $\delta_C(p,q) := d_C(p,q)/|pq|$
- Geometric Dilation

$$\delta(C) := \sup_{p,q \in C, p \neq q} \delta_C(p,q)$$

- here: only for cycle $C \subset \mathbb{R}^2$
- $p, q \in C$
- $d_C(p,q) := \text{length of shortest}$ path on C connecting p, q
- |pq| = Euclidean distance
- Dilation $\delta_C(p,q) := d_C(p,q)/|pq|$
- Geometric Dilation

$$\delta(C) := \sup_{p,q \in C, p \neq q} \delta_C(p,q)$$

- here: only for cycle $C \subset \mathbb{R}^2$
- $p, q \in C$
- $d_C(p,q) := \text{length of shortest}$ path on C connecting p, q
- |pq| = Euclidean distance
- Dilation $\delta_C(p,q) := d_C(p,q)/|pq|$
- Geometric Dilation $\delta(C) := \sup_{p,q \in C, p \neq q} \delta_C(p,q)$

- here: only for cycle $C \subset \mathbb{R}^2$
- $p, q \in C$
- $d_C(p,q) := \text{length of shortest}$ path on C connecting p, q
- |pq| = Euclidean distance
- Dilation $\delta_C(p,q) := d_C(p,q)/|pq|$
- Geometric Dilation

$$\delta(C) := \sup_{p,q \in C, p \neq q} \delta_C(p,q)$$

- here: only for cycle $C \subset \mathbb{R}^2$
- $p, q \in C$
- $d_C(p,q) := \text{length of shortest}$ path on C connecting p, q
- |pq| = Euclidean distance
- Dilation $\delta_C(p,q) := d_C(p,q)/|pq|$
- Geometric Dilation

$$\delta(C) := \sup_{p,q \in C, p \neq q} \delta_C(p,q)$$

- here: only for cycle $C \subset \mathbb{R}^2$
- $p, q \in C$
- $d_C(p,q) := \text{length of shortest}$ path on C connecting p, q
- |pq| = Euclidean distance
- Dilation $\delta_C(p,q) := d_C(p,q)/|pq|$
- Geometric Dilation $\delta(C) := \sup_{p,q \in C, p \neq q} \delta_C(p,q)$

- here: only for cycle $C \subset \mathbb{R}^2$
- $p, q \in C$
- $d_C(p,q) := \text{length of shortest}$ path on C connecting p, q
- |pq| = Euclidean distance
- Dilation $\delta_C(p,q) := d_C(p,q)/|pq|$
- Geometric Dilation $\delta(C) := \sup_{p,q \in C, p \neq q} \delta_C(p,q)$

- •
- - • P₁₀

- ISAAC'03: point set P_{10} : \forall graph G embedding P_{10} : $\delta(G) \geq \frac{\pi}{2}$
- most important step: \forall cycle C: $\delta(C) \geq \frac{\pi}{2}$
- Which cycles (besides circles) attain $\delta(C) = \frac{\pi}{2}$?

- ISAAC'03: point set P_{10} : \forall graph G embedding P_{10} : $\delta(G) \geq \frac{\pi}{2}$
- most important step: \forall cycle C: $\delta(C) \geq \frac{\pi}{2}$
- Which cycles (besides circles) attain $\delta(C) = \frac{\pi}{2}$?

- ISAAC'03: point set P_{10} : \forall graph G embedding P_{10} : $\delta(G) \geq \frac{\pi}{2}$
- most important step: \forall cycle C: $\delta(C) \geq \frac{\pi}{2}$
- Which cycles (besides circles) attain $\delta(C) = \frac{\pi}{2}$?

- ISAAC'03: point set P_{10} : \forall graph G embedding P_{10} : $\delta(G) \geq \frac{\pi}{2}$
- most important step: \forall cycle C: $\delta(C) \geq \frac{\pi}{2}$
- Which cycles (besides circles) attain $\delta(C) = \frac{\pi}{2}$?

- ISAAC'03: point set P_{10} : \forall graph G embedding P_{10} : $\delta(G) \geq \frac{\pi}{2}$
- most important step: \forall cycle C: $\delta(C) \geq \frac{\pi}{2}$
- Which cycles (besides circles) attain $\delta(C) = \frac{\pi}{2}$?

- ISAAC'03: point set P_{10} : \forall graph G embedding P_{10} : $\delta(G) \geq \frac{\pi}{2}$
- most important step: \forall cycle C: $\delta(C) \geq \frac{\pi}{2}$
- Which cycles (besides circles) attain $\delta(C) = \frac{\pi}{2}$?

- C cycle
- $\operatorname{ch}(C) = \operatorname{convex} \operatorname{hull}$
- Then: $\delta(\operatorname{ch}(C)) \leq \delta(C)$
- from now on: **CONVEX CYCLES!**

- C cycle
- $\operatorname{ch}(C) = \operatorname{convex} \operatorname{hull}$
- Then: $\delta(\operatorname{ch}(C)) \leq \delta(C)$
- from now on: **CONVEX CYCLES!**

- C cycle
- $\operatorname{ch}(C) = \operatorname{convex} \operatorname{hull}$
- Then: $\delta(\operatorname{ch}(C)) \leq \delta(C)$
- from now on: **CONVEX CYCLES!**

- C cycle
- $\operatorname{ch}(C) = \operatorname{convex} \operatorname{hull}$
- Then: $\delta(\operatorname{ch}(C)) \leq \delta(C)$
- from now on: **CONVEX CYCLES!**

- $\delta(C) = \sup d_C(p,q)/|pq|$
- max. candidates: $d_C(p,q)$ maximal
- \Rightarrow Partition Pair: $d_C(p, \tilde{p}) = \frac{|C|}{2}$
 - indeed: a partition pair attains maximum dilation for convex C (follows from Ebbers-Baumann et al., '01)
- $\Rightarrow \delta(C) = \frac{|C|}{2h(C)}$, h(C) := min. partition pair distance

•
$$\delta(C) = \sup d_C(p,q)/|pq|$$

- max. candidates: $d_C(p,q)$ maximal
- \Rightarrow Partition Pair: $d_C(p, \tilde{p}) = \frac{|C|}{2}$
 - indeed: a partition pair attains maximum dilation for convex C (follows from Ebbers-Baumann et al., '01)
 - $\Rightarrow \delta(C) = \frac{|C|}{2h(C)}$, h(C) := min. partition pair distance

•
$$\delta(C) = \sup d_C(p,q)/|pq|$$

- max. candidates: $d_C(p,q)$ maximal
- \Rightarrow Partition Pair: $d_C(p, \tilde{p}) = \frac{|C|}{2}$
- indeed: a partition pair attains maximum dilation for convex C (follows from Ebbers-Baumann et al., '01)
- $\Rightarrow \delta(C) = \frac{|C|}{2h(C)}$, h(C) := min. partition pair distance

•
$$\delta(C) = \sup d_C(p,q)/|pq|$$

- max. candidates: $d_C(p,q)$ maximal
- \Rightarrow Partition Pair: $d_C(p, \tilde{p}) = \frac{|C|}{2}$
- indeed: a partition pair attains maximum dilation for convex C (follows from Ebbers-Baumann et al., '01)
- $\Rightarrow \delta(C) = \frac{|C|}{2h(C)}$, $h(C) := \min$. partition pair distance

•
$$\delta(C) = \sup d_C(p,q)/|pq|$$

- max. candidates: $d_C(p,q)$ maximal
- \Rightarrow Partition Pair: $d_C(p, \tilde{p}) = \frac{|C|}{2}$
- indeed: a partition pair attains maximum dilation for convex C (follows from Ebbers-Baumann et al., '01)
- $\Rightarrow \delta(C) = \frac{|C|}{2h(C)}$, $h(C) := \min$. partition pair distance

•
$$\delta(C) = \sup d_C(p,q)/|pq|$$

- max. candidates: $d_C(p,q)$ maximal
- \Rightarrow Partition Pair: $d_C(p, \tilde{p}) = \frac{|C|}{2}$
- indeed: a partition pair attains maximum dilation for convex C (follows from Ebbers-Baumann et al., '01)
- $\Rightarrow \delta(C) = \frac{|C|}{2h(C)}$, $h(C) := \min$. partition pair distance

•
$$\delta(C) = \sup d_C(p,q)/|pq|$$

- max. candidates: $d_C(p,q)$ maximal
- \Rightarrow Partition Pair: $d_C(p, \tilde{p}) = \frac{|C|}{2}$
- indeed: a partition pair attains maximum dilation for convex C (follows from Ebbers-Baumann et al., '01)
- $\Rightarrow \delta(C) = \frac{|C|}{2h(C)}$, $h(C) := \min$. partition pair distance

- direction $v \in \mathbb{S}^1$ (unit vector)
- Partition Pair Distance $h_C(v) := |p\tilde{p}|,$ (p, \tilde{p}) partition pair with dir. v
- Length $l_C(v) := \text{length of longest}$ stick with dir. v fitting into C
- Breadth $b_C(v) := \text{distance}$ calipers orthogonal to v
- easy: $h_C(v) \leq l_C(v) \leq b_C(v)$

- direction $v \in \mathbb{S}^1$ (unit vector)
- Partition Pair Distance $h_C(v) := |p\tilde{p}|,$ (p, \tilde{p}) partition pair with dir. v
- Length $l_C(v) := \text{length of longest}$ stick with dir. v fitting into C
- Breadth $b_C(v) := \text{distance}$ calipers orthogonal to v
- easy: $h_C(v) \leq l_C(v) \leq b_C(v)$

- direction $v \in \mathbb{S}^1$ (unit vector)
- Partition Pair Distance $h_C(v) := |p\tilde{p}|,$ (p, \tilde{p}) partition pair with dir. v
- Length $l_C(v) := \text{length of longest}$ stick with dir. v fitting into C
- Breadth $b_C(v) := \text{distance}$ calipers orthogonal to v
- easy: $h_C(v) \leq l_C(v) \leq b_C(v)$

- direction $v \in \mathbb{S}^1$ (unit vector)
- Partition Pair Distance $h_C(v) := |p\tilde{p}|,$ $(p, \tilde{p}) \text{ partition pair with dir. } v$
- Length $l_C(v) := \text{length of longest}$ stick with dir. v fitting into C
- Breadth $b_C(v) :=$ distance of calipers orthogonal to v
- easy: $h_C(v) \leq l_C(v) \leq b_C(v)$

- direction $v \in \mathbb{S}^1$ (unit vector)
- Partition Pair Distance $h_C(v) := |p\tilde{p}|,$ $(p, \tilde{p}) \text{ partition pair with dir. } v$
- Length $l_C(v) := \text{length of longest}$ stick with dir. v fitting into C
- Breadth $b_C(v) :=$ distance of calipers orthogonal to v
- easy: $h_C(v) \leq l_C(v) \leq b_C(v)$

- Width $w(C) := \min b(v) \stackrel{\mathsf{convex},^*}{=} \min l(v)$
- Diameter $D(C) := \max l(v) \stackrel{*}{=} \max b(v)$
- Minimum Partition Pair Distance $h(C) := \min h(v)$
- Maximum Partition Pair Distance $H(C) := \max h(v)$
- * see e.g. Gritzmann, Klee '92

- Width $w(C) := \min b(v) \stackrel{\text{convex,*}}{=} \min l(v)$
- Diameter $D(C) := \max l(v) \stackrel{*}{=} \max b(v)$
- Minimum Partition Pair Distance $h(C) := \min h(v)$
- Maximum Partition Pair Distance $H(C) := \max h(v)$
- * see e.g. Gritzmann, Klee '92

- Width $w(C) := \min b(v) \stackrel{\mathsf{convex},^*}{=} \min l(v)$
- Diameter $D(C) := \max l(v) \stackrel{*}{=} \max b(v)$
- Minimum Partition Pair Distance $h(C) := \min h(v)$
- Maximum Partition Pair Distance $H(C) := \max h(v)$
- * see e.g. Gritzmann, Klee '92

- Width $w(C) := \min b(v) \stackrel{\mathsf{convex},^*}{=} \min l(v)$
- Diameter $D(C) := \max l(v) \stackrel{*}{=} \max b(v)$
- Minimum Partition Pair Distance $h(C) := \min h(v)$
- Maximum Partition Pair Distance $H(C) := \max h(v)$
- * see e.g. Gritzmann, Klee '92

Breadth Measures

- Width $w(C) := \min b(v) \stackrel{\mathsf{convex},^*}{=} \min l(v)$
- Diameter $D(C) := \max l(v) \stackrel{*}{=} \max b(v)$
- Minimum Partition Pair Distance $h(C) := \min h(v)$
- Maximum Partition Pair Distance $H(C) := \max h(v)$
- * see e.g. Gritzmann, Klee '92

- ullet move centers of pairs attaining $l_C(v)$ (longest stick) to origin
- new cycle =: C'

- move centers of pairs attaining $l_C(v)$ (longest stick) to origin
- new cycle =: C'

- ullet move centers of pairs attaining $l_C(v)$ (longest stick) to origin
- new cycle =: C'

- ullet move centers of pairs attaining $l_C(v)$ (longest stick) to origin
- new cycle =: C'

- ullet move centers of pairs attaining $l_C(v)$ (longest stick) to origin
- new cycle =: C'

- ullet move centers of pairs attaining $l_C(v)$ (longest stick) to origin
- new cycle =: C'

- move centers of pairs attaining $l_C(v)$ (longest stick) to origin
- new cycle =: C'

- a) C' convex, point-symmetric
- b) $l_{C'}(v) = l_C(v)$
- c) $b_{C'}(v) = b_C(v)$
- d) w(C') = w(C), D(C') = D(C)

- e) |C'| = |C|
- f) $h_{C'}(v) \ge h_C(v)$
- g) $\delta(C') \leq \delta(C)$

- a) C' convex, point-symmetric
- b) $l_{C'}(v) = l_C(v)$
- c) $b_{C'}(v) = b_C(v)$
- d) w(C') = w(C), D(C') = D(C)

- e) |C'| = |C|
- f) $h_{C'}(v) \ge h_C(v)$
- g) $\delta(C') \leq \delta(C)$

(see Gritzmann, Klee '92)

- a) C' convex, point-symmetric
- b) $l_{C'}(v) = l_C(v)$
- c) $b_{C'}(v) = b_C(v)$
- d) w(C') = w(C), D(C') = D(C)

- e) |C'| = |C|
- f) $h_{C'}(v) \ge h_C(v)$
- g) $\delta(C') \leq \delta(C)$

(see Gritzmann, Klee '92)

- a) C' convex, point-symmetric
- b) $l_{C'}(v) = l_C(v)$
- c) $b_{C'}(v) = b_C(v)$
- d) w(C') = w(C), D(C') = D(C)

- e) |C'| = |C|
- f) $h_{C'}(v) \ge h_C(v)$
- g) $\delta(C') \leq \delta(C)$

(see Gritzmann, Klee '92)

- a) C' convex, point-symmetric
- b) $l_{C'}(v) = l_C(v)$
- c) $b_{C'}(v) = b_C(v)$
- d) w(C') = w(C), D(C') = D(C)

- e) |C'| = |C|
- f) $h_{C'}(v) \ge h_C(v)$
- g) $\delta(C') \leq \delta(C)$

(follows immediately from b) or c))

- a) C' convex, point-symmetric
- b) $l_{C'}(v) = l_C(v)$
- c) $b_{C'}(v) = b_C(v)$
- d) w(C') = w(C), D(C') = D(C)

- e) |C'| = |C|
- f) $h_{C'}(v) \ge h_C(v)$
- g) $\delta(C') \leq \delta(C)$

(follows immediately from b) or c))

- a) C' convex, point-symmetric
- b) $l_{C'}(v) = l_C(v)$
- c) $b_{C'}(v) = b_C(v)$
- d) w(C') = w(C), D(C') = D(C)

- e) |C'| = |C|
- f) $h_{C'}(v) \ge h_C(v)$
- g) $\delta(C') \leq \delta(C)$

(follows from c) and Cauchy's Surface Area Formula)

- a) C' convex, point-symmetric
- b) $l_{C'}(v) = l_C(v)$
- c) $b_{C'}(v) = b_C(v)$
- d) w(C') = w(C), D(C') = D(C)

e)
$$|C'| = |C|$$

f)
$$h_{C'}(v) \ge h_C(v)$$

g)
$$\delta(C') \leq \delta(C)$$

$$\left(h_{C'}(v) \stackrel{\text{point-sym.}}{=} l_{C'}(v) \stackrel{\text{b)}}{=} l_C(v) \geq h_C(v)\right)$$

- a) C' convex, point-symmetric
- b) $l_{C'}(v) = l_C(v)$
- c) $b_{C'}(v) = b_C(v)$
- d) w(C') = w(C), D(C') = D(C)

$$\left(\delta(C') = \frac{|C'|}{2h(C')} \overset{\text{e), f)}}{\leq} \frac{|C|}{2h(C)} = \delta(C)\right)$$

e)
$$|C'| = |C|$$

f)
$$h_{C'}(v) \ge h_C(v)$$

g)
$$\delta(C') \leq \delta(C)$$

- C point-symmetric (about origin) \Rightarrow partition pairs (p, -p), $h_C(v) = l_C(v), w = h, D = H$
- C does not enter $B_{w/2}(0)$
- \exists partition pair (q,-q) of distance H(C)=D(C)

•
$$\Rightarrow \delta(C) = \frac{|C|}{2h} \ge \frac{|C|}{2h}$$

= $\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$

- C point-symmetric (about origin)
 - \Rightarrow partition pairs (p,-p), $h_C(v)=l_C(v)$, w=h, D=H
- C does not enter $B_{w/2}(0)$
- \exists partition pair (q,-q) of distance H(C)=D(C)

•
$$\Rightarrow \delta(C) = \frac{|C|}{2h} \ge \frac{|C|}{2h}$$

= $\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$

- C point-symmetric (about origin)
 - \Rightarrow partition pairs (p, -p), $h_C(v) = l_C(v)$, w = h, D = H
- C does not enter $B_{w/2}(0)$
- \bullet \exists partition pair (q,-q) of distance H(C)=D(C)

•
$$\Rightarrow \delta(C) = \frac{|C|}{2h} \ge \frac{|C|}{2h}$$

= $\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$

- C point-symmetric (about origin) \Rightarrow partition pairs (p, -p), $h_C(v) = l_C(v)$, w = h, D = H
- C does not enter $B_{w/2}(0)$
- \bullet \exists partition pair (q,-q) of distance H(C)=D(C)

•
$$\Rightarrow \delta(C) = \frac{|C|}{2h} \ge \frac{|\tilde{C}|}{2h}$$

= $\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$

- C point-symmetric (about origin) \Rightarrow partition pairs (p, -p), $h_C(v) = l_C(v)$, w = h, D = H
- C does not enter $B_{w/2}(0)$
- \exists partition pair (q,-q) of distance H(C)=D(C)

•
$$\Rightarrow \delta(C) = \frac{|C|}{2h} \ge \frac{|C|}{2h}$$

= $\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$

- C point-symmetric (about origin)
 - \Rightarrow partition pairs (p,-p), $h_C(v)=l_C(v)$, w=h, D=H
- C does not enter $B_{w/2}(0)$
- \exists partition pair (q,-q) of distance H(C)=D(C)

•
$$\Rightarrow \delta(C) = \frac{|C|}{2h} \ge \frac{|C|}{2h}$$

= $\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$

- C point-symmetric (about origin)
 - \Rightarrow partition pairs (p,-p), $h_C(v)=l_C(v)$, w=h, D=H
- C does not enter $B_{w/2}(0)$
- \exists partition pair (q,-q) of distance H(C)=D(C)

•
$$\Rightarrow \delta(C) = \frac{|C|}{2h} \ge \frac{|\tilde{C}|}{2h}$$

= $\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$

- C point-symmetric (about origin)
 - \Rightarrow partition pairs (p,-p), $h_C(v)=l_C(v)$, w=h, D=H
- C does not enter $B_{w/2}(0)$
- \bullet \exists partition pair (q,-q) of distance H(C)=D(C)

•
$$\Rightarrow \delta(C) = \frac{|C|}{2h} \ge \frac{|C|}{2h}$$

= $\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$

- C point-symmetric (about origin)
 - \Rightarrow partition pairs (p,-p), $h_C(v)=l_C(v)$, w=h, D=H
- C does not enter $B_{w/2}(0)$
- \exists partition pair (q,-q) of distance H(C)=D(C)

•
$$\Rightarrow \delta(C) = \frac{|C|}{2h} \ge \frac{|C|}{2h}$$

= $\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$

- C point-symmetric (about origin)
 - \Rightarrow partition pairs (p,-p), $h_C(v)=l_C(v)$, w=h, D=H
- C does not enter $B_{w/2}(0)$
- \exists partition pair (q,-q) of distance H(C)=D(C)

•
$$\Rightarrow \delta(C) = \frac{|C|}{2h} \ge \frac{|C|}{2h}$$

= $\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$

$$\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$$

- lower dilation bound extends to arbitrary convex cycles by central symmetrization
- $\delta(C) = \pi/2 \Rightarrow w = D$ (cycle of constant breadth)
- Partition Pair Transformation (analogously moves partition pairs to origin): $\delta(C) = \pi/2$ $\Rightarrow C$ point-symmetric
- $\delta(C) = \pi/2 \Rightarrow C$ circle

$$\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$$

- lower dilation bound extends to arbitrary convex cycles by central symmetrization
- $\delta(C) = \pi/2 \Rightarrow w = D$ (cycle of constant breadth)
- Partition Pair Transformation (analogously moves partition pairs to origin): $\delta(C) = \pi/2$ $\Rightarrow C$ point-symmetric
- $\delta(C) = \pi/2 \Rightarrow C$ circle

$$\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$$

- lower dilation bound extends to arbitrary convex cycles by central symmetrization
- $\delta(C) = \pi/2 \Rightarrow w = D$ (cycle of constant breadth)
- Partition Pair Transformation (analogously moves partition pairs to origin): $\delta(C) = \pi/2$ $\Rightarrow C$ point-symmetric
- $\delta(C) = \pi/2 \Rightarrow C$ circle

$$\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$$

- lower dilation bound extends to arbitrary convex cycles by central symmetrization
- $\delta(C) = \pi/2 \Rightarrow w = D$ (cycle of constant breadth)
- Partition Pair Transformation (analogously moves partition pairs to origin): $\delta(C) = \pi/2$ $\Rightarrow C$ point-symmetric
- $\delta(C) = \pi/2 \Rightarrow C$ circle

$$\arcsin\left(\frac{w}{D}\right) + \sqrt{\left(\frac{D}{w}\right)^2 - 1}$$

- lower dilation bound extends to arbitrary convex cycles by central symmetrization
- $\delta(C) = \pi/2 \Rightarrow w = D$ (cycle of constant breadth)
- Partition Pair Transformation (analogously moves partition pairs to origin): $\delta(C) = \pi/2$ $\Rightarrow C$ point-symmetric
- $\delta(C) = \pi/2 \Rightarrow C$ circle

The End

Thank You!

This page is dedicated to Annette who forced me to add it.

$$\delta(C) = \frac{\pi r}{2r} = \frac{\pi}{2}$$

The End

Thank You!

This page is dedicated to Annette who forced me to add it.

$$\delta(C) = \frac{\pi r}{2r} = \frac{\pi}{2}$$