Discrete and Computational Geometry, WS1516 Exercise Sheet "2": Master Theorem and Voronoi Diagrams University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Wednesday 11th of November, 12:00 pm.
- There is a letterbox in front of Room E.01 in the LBH building.
- You may work in groups of at most two participants.

Exercise 1: Master Theorem I (4 Points)

Consider a function $T(\cdot)$ satisfying the following recurrence:

$$T(n) = (\ln r + 1)T(\lceil \alpha n \rceil) + O(D(n)),$$

where $r, \alpha < 1$, and $\epsilon > 0$ are constants and D(n) is a function such that $D(n)/n^{\epsilon}$ is monotone increasing in n. Please prove that if $(\ln r + 1)\alpha^{\epsilon} < 1$, $T(n) \leq C \cdot D(n)$, where C is a constant depending on r, α , and ϵ .

Exercise 2: Master Theorem II (4 Points)

Consider a function $T(\cdot)$ satisfying the following recurrence:

$$T(n) = 2T(\lceil \frac{n}{2} \rceil) + O(D(n)),$$

where D(n)/n is monotone increasing in n and ϵ is a positive constant. Please prove the following.

- $T(n) = O(D(n)\log n).$
- If $D(n)/n^{1+\epsilon}$ is monotone increasing in *n* where $\epsilon > 0$, T(n) = O(D(n)).

Exercise 3: Voronoi Diagrams

(4 Points)

Given a set S of n points in the Euclidean plane, the Voronoi diagram V(S) partitions the plane into Voronoi regions VR(p, S), $p \in S$, such that all points in VR(p, S) share the same nearest site p among S. We make a general position assumption that no more than three points of S are located on the same circle. Let e, v, and u be the numbers of edges, vertices, unbounded faces of V(S).

- 1. Please prove e = 3(n-1) u and v = 2(n-1) u. (Hint: use Euler's forumla)
- 2. Please explain that the number of vertices will not increase without the general position assumption. In other words, $v \leq 2(n-1) u$.