Discrete and Computational Geometry, WS1516 Exercise Sheet "2": Master Theorem and Voronoi Diagrams
 University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Wednesday 11th of November, 12:00 pm.
- There is a letterbox in front of Room E. 01 in the LBH builiding.
- You may work in groups of at most two participants.

Exercise 1: Master Theorem I

Consider a function $T(\cdot)$ satisfying the following recurrence:

$$
T(n)=(\ln r+1) T(\lceil\alpha n\rceil)+O(D(n)),
$$

where $r, \alpha<1$, and $\epsilon>0$ are constants and $D(n)$ is a function such that $D(n) / n^{\epsilon}$ is monotone increasing in n. Please prove that if $(\ln r+1) \alpha^{\epsilon}<1$, $T(n) \leq C \cdot D(n)$, where C is a constant depending on r, α, and ϵ.

Exercise 2: Master Theorem II

Consider a function $T(\cdot)$ satisfying the following recurrence:

$$
T(n)=2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+O(D(n))
$$

where $D(n) / n$ is monotone increasing in n and ϵ is a positive constant. Please prove the following.

- $T(n)=O(D(n) \log n)$.
- If $D(n) / n^{1+\epsilon}$ is monotone increasing in n where $\epsilon>0, T(n)=O(D(n))$.

Exercise 3: Voronoi Diagrams

Given a set S of n points in the Euclidean plane, the Voronoi diagram $V(S)$ partitions the plane into Voronoi regions $\operatorname{VR}(p, S), p \in S$, such that all points in $\operatorname{VR}(p, S)$ share the same nearest site p among S. We make a general position assumption that no more than three points of S are located on the same circle. Let e, v, and u be the numbers of edges, vertices, unbounded faces of $V(S)$.

1. Please prove $e=3(n-1)-u$ and $v=2(n-1)-u$. (Hint: use Euler's forumla)
2. Please explain that the number of vertices will not increase without the general position assumption. In other words, $v \leq 2(n-1)-u$.
