Voronoi Diagram and Delaunay Triangulation Randomized Incremental Construction

Chih-Hung Liu

May 13, 2015

Outline

(1) Voronoi Diagrams and Delaunay Triangulations - Properties and Duality
(2) Randomized Incremental Construction

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision

Voronoi Diagrams

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision
(1) Each region contains exactly one site $p \in S$ and is denoted by $\operatorname{VR}(p, S)$.

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision
(1) Each region contains exactly one site $p \in S$ and is denoted by $\operatorname{VR}(p, S)$.

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision
(1) Each region contains exactly one site $p \in S$ and is denoted by $\operatorname{VR}(p, S)$.

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision
(1) Each region contains exactly one site $p \in S$ and is denoted by $\operatorname{VR}(p, S)$.
(2) For each point $x \in \operatorname{VR}(p, S), p$ is its closest site in S.

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision
(1) Each region contains exactly one site $p \in S$ and is denoted by $\operatorname{VR}(p, S)$.
(2) For each point $x \in \operatorname{VR}(p, S), p$ is its closest site in S.
- $\operatorname{VR}(p, S)$ is the locus of points closer to p than any other site.

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.
- $\boldsymbol{D}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$.
- Two half-planes $D(p, q)$ and $D(q, p)$ separated by $B(p, q)$.

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.
- $\boldsymbol{D}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$.
- Two half-planes $D(p, q)$ and $D(q, p)$ separated by $B(p, q)$.

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.
- $\boldsymbol{D}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$.
- Two half-planes $D(p, q)$ and $D(q, p)$ separated by $B(p, q)$.

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.
- $\boldsymbol{D}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$.
- Two half-planes $D(p, q)$ and $D(q, p)$ separated by $B(p, q)$.

$$
\operatorname{VR}(p, S)=\bigcap_{q \in S, q \neq p} D(p, q) .
$$

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.
- $\boldsymbol{D}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$.
- Two half-planes $D(p, q)$ and $D(q, p)$ separated by $B(p, q)$.

$$
\operatorname{VR}(p, S)=\bigcap_{q \in S, q \neq p} D(p, q)
$$

Voronoi Edge and Vertex

- Voronoi Edge
- Common intersection between two adjacent Voronoi regions $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Voronoi Edge and Vertex

- Voronoi Edge
- Common intersection between two adjacent Voronoi regions $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- A piece of $B(p, q)$

Voronoi Edge and Vertex

- Voronoi Edge
- Common intersection between two adjacent Voronoi regions $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- A piece of $B(p, q)$

Voronoi Edge and Vertex

- Voronoi Edge
- Common intersection between two adjacent Voronoi regions $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- A piece of $B(p, q)$
- Voronoi Vertex
- Common intersection among more than two Voronoi regions $\operatorname{VR}(p, S), \operatorname{VR}(q, S), \operatorname{VR}(r, S)$, and so on.

Growing Circle

- Grow a circle from a point x on the plane

Growing Circle

- Grow a circle from a point x on the plane

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- x_{0}

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- Hit more than two sites $p, q, r, \ldots \in S \rightarrow x$ is the Voronoi vertex among $\operatorname{VR}(p, S), \operatorname{VR}(q, S), \operatorname{VR}(r, S), \ldots$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- Hit more than two sites $p, q, r, \ldots \in S \rightarrow x$ is the Voronoi vertex among $\operatorname{VR}(p, S), \operatorname{VR}(q, S), \operatorname{VR}(r, S), \ldots$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed - $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- $x \in R^{2}$ is first hit by two circles from p and $q \rightarrow x$ belongs to a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- $x \in R^{2}$ is first hit by two circles from p and $q \rightarrow x$ belongs to a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- $x \in R^{2}$ is first hit by two circles from p and $q \rightarrow x$ belongs to a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- $x \in R^{2}$ is first hit by three circles from p, q, and $r \rightarrow x$ is a Voronoi vertex among $\operatorname{VR}(p, S), \operatorname{VR}(q, S)$ and $\operatorname{VR}(r, S)$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- $x \in R^{2}$ is first hit by two circles from p and $q \rightarrow x$ belongs to a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- $x \in R^{2}$ is first hit by three circles from p, q, and $r \rightarrow x$ is a Voronoi vertex among $\operatorname{VR}(p, S), \operatorname{VR}(q, S)$ and $\operatorname{VR}(r, S)$

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p
- For any point $x \in \overrightarrow{c p} \backslash \overline{c p}, x$ belongs to $\operatorname{VR}(p, S)$

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p
- For any point $x \in \overrightarrow{c p} \backslash \overline{c p}, x$ belongs to $\operatorname{VR}(p, S)$

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p
- For any point $x \in \overrightarrow{C D} \backslash \overline{C p}, x$ belongs to $\operatorname{VR}(p, S)$
- $\overrightarrow{c p}$ extends to the infinity.

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p
- For any point $x \in \overrightarrow{c D} \backslash \overline{c p}, x$ belongs to $\operatorname{VR}(p, S)$
- $\overrightarrow{c p}$ extends to the infinity.
- If S is in convex position, $V(S)$ is a tree.

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p
- For any point $x \in \overrightarrow{c D} \backslash \overline{c p}, x$ belongs to $\operatorname{VR}(p, S)$
- $\overrightarrow{c p}$ extends to the infinity.
- If S is in convex position, $V(S)$ is a tree.
- An unbounded Voronoi edge corresponds to a hull edge.

Voronoi Diagram (Mathematic Definition)

- Voronoi Diagram $V(S)$

$$
V(S)=R^{2} \backslash\left(\bigcup_{p \in S} \operatorname{VR}(p, S)\right)=\bigcup_{p \in S} \partial \operatorname{VR}(p, S)
$$

- $\partial \mathrm{VR}(p, S)$ is the boundary of $\operatorname{VR}(p, S)$
- $\partial \mathrm{VR}(p, S) \not \subset \mathrm{VR}(p, S)$
- $V(S)$ is the union of all the Voronoi edges
- Voronoi Edge e between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

$$
e=\partial \operatorname{VR}(p, S) \cap \partial \operatorname{VR}(q, S)
$$

- Voronoi Vertex v among $\operatorname{VR}(p, S), \operatorname{VR}(q, S)$, and $\operatorname{VR}(r, S)$

$$
v=\partial \mathrm{VR}(p, S) \cap \partial \mathrm{VR}(q, S) \cap \partial \mathrm{VR}(r, S)
$$

Complexity of $V(S)$

Theorem

$V(S)$ has $O(n)$ edges and vertices．The average number of edges of a Voronoi region is less than 6.

- Add a large curve 「
- 「 only passes through unbounded edges of $V(S)$
- Cut unbounded pieces outside 「
－One additional face and several edges and vertices．

Complexity of $V(S)$

Theorem

$V(S)$ has $O(n)$ edges and vertices. The average number of edges of a Voronoi region is less than 6.

- Euler's Polyhedron Formula: $v-e+f=1+c$
- v: \# of vertices, e: \# of edges, f : \# of faces, and c : \# number of connected components.
- An edge has two endpoints, and a vertex is incident to at least three edges.
- $3 v \leq 2 e \rightarrow v \leq 2 e / 3$
- $f=n+1$ and $c=1$
- $v=1+c+e-f=e+1-n \leq 2 e / 3 \rightarrow e \leq 3 n-3$
- $e=v+f-1-c=v+n-1 \geq 3 v / 2 \rightarrow v \leq 2 n-2$
- Average number of edges of a region $\leq(6 n-6) / n<6$

Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Crossing ($\overline{p q)}$

Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Not Maximal ($\overline{p q}$ is allowable)

Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Triangulation

Delaunay Edge

Definition

An edge $\overline{p q}$ is called Delaunay if there exists a circle passing through p and q and containing no other point in its interior.

Delaunay Edge

Definition

An edge $\overline{p q}$ is called Delaunay if there exists a circle passing through p and q and containing no other point in its interior.

Delaunay Edge

Definition

An edge $\overline{p q}$ is called Delaunay if there exists a circle passing through p and q and containing no other point in its interior.

Delaunay Triangulation

Definition

A Delaunay Triangulation is a triangulation whose edges are all Delaunay.

Delaunay Triangulation

Definition

A Delaunay Triangulation is a triangulation whose edges are all Delaunay.

Delaunay Triangulation

Definition

A Delaunay Triangulation is a triangulation whose edges are all Delaunay.

Delaunay Triangulation

Definition

A Delaunay Triangulation is a triangulation whose edges are all Delaunay.

- For each face, there exists a circle passing all its vertices and containing no other point.

General Position Assumption

(1) No more than two point sites are colinear

General Position Assumption

(1) No more than two point sites are colinear

- $V(S)$ is connected

General Position Assumption

(1) No more than two point sites are colinear - $V(S)$ is connected
(2) No more than three point sites are cocircular (At most three points are on the same circle)

General Position Assumption

(1) No more than two point sites are colinear

- $V(S)$ is connected
(2) No more than three point sites are cocircular (At most three points are on the same circle)
- degree of each Voronoi vertex is exactly 3.

General Position Assumption

(1) No more than two point sites are colinear

- $V(S)$ is connected
(2) No more than three point sites are cocircular (At most three points are on the same circle)
- degree of each Voronoi vertex is exactly 3.
- Each face of the Delaunay triangulation is a triangle.

General Position Assumption

(1) No more than two point sites are colinear

- $V(S)$ is connected
(2) No more than three point sites are cocircular (At most three points are on the same circle)
- degree of each Voronoi vertex is exactly 3.
- Each face of the Delaunay triangulation is a triangle.
- There is a unique Delaunay triangulation.

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow a \operatorname{Voronoi}$ region $\operatorname{VR}(p, S)$

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow$ a Voronoi region $\operatorname{VR}(p, S)$
- A Delaunay edge $\overline{p q} \leftrightarrow$ a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow$ a Voronoi region $\operatorname{VR}(p, S)$
- A Delaunay edge $\overline{p q} \leftrightarrow$ a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- A Delaunay triangle $\Delta p q r \leftrightarrow$ a Voronoi vertex among $\operatorname{VR}(p, S), \operatorname{VR}(q, S)$ and $\operatorname{VR}(r, S)$

Algorithms

- Lower Bound for Time: $\Omega(n \log n)$

Algorithms

- Lower Bound for Time: $\Omega(n \log n)$
- Convex hull of S can be computed in linear time from $V(S)$.

Algorithms

- Lower Bound for Time: $\Omega(n \log n)$
- Convex hull of S can be computed in linear time from $V(S)$.

- O($n \log n$) time algorithms
- Plane Sweep Algorithm
- Divide and Conquer Algorithm
- General Idea
- Consider a random sequence of $S,\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.
- Let R_{i} be $\left\{s_{1}, \ldots, s_{i}\right\}$
- From $i=4$ to $i=n-1$, construct $V\left(R_{i+1}\right)$ from $V\left(R_{i}\right)$ by inserting s_{i+1}.
- Tasks
- What is a configuration?
- What is a conflict relation?
- How to use conflict relations to insert a site?
- How to update conflict relations?
- General Position Assumption
- No more than three sites are located on the same circle \rightarrow The degree of a Voronoi vertex is exactly 3
- No more than two points are located on the same line \rightarrow The Voronoi diagram is connected

Configuration: A Voronoi edge

- A Voronoi region can not be a configuration because it could consist of $O(n)$ edges, i.e., it is not defined by a constant number of sites
- Consider a Voronoi edge e between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- $e \subseteq B(p, q)$
- Assume e has two endpoints v and u. Then

$$
\begin{aligned}
& v=\overline{\operatorname{VR}(p, S)} \cap \overline{\operatorname{VR}(q, S) \operatorname{VR}(r, S)} \text { and } \\
& u=\overline{\operatorname{VR}(p, S)} \cap \overline{\operatorname{VR}(q, S) \operatorname{VR}(s, S) .}
\end{aligned}
$$

- e is defined by p, q, r, s
- A Voronoi edge is defined by at most 4 sites.

Conflict Relation

- A site $t \in S \backslash R$ conflicts with a Voronoi edge e between $\operatorname{VR}(p, R)$ and $\operatorname{VR}(q, R)$ if $e \cap \operatorname{VR}(t, R \cup\{t\}) \neq \emptyset$.

Conflict Relation

- A site $t \in S \backslash R$ conflicts with a Voronoi edge e between $\operatorname{VR}(p, R)$ and $\operatorname{VR}(q, R)$ if $e \cap \operatorname{VR}(t, R \cup\{t\}) \neq \emptyset$.

Lemma

$$
e \cap \operatorname{VR}(r, R \cup\{r\})=e \cap \operatorname{VR}(r,\{p, q, r\}) \text { (Local Test) }
$$

Insert a Site t

Lemma
$V(R) \cap \operatorname{VR}(t, R \cup\{t\})$ is a tree

Insert a Site t

Lemma
$V(R) \cap \operatorname{VR}(t, R \cup\{t\})$ is a tree

Insert a Site t

Lemma
$V(R) \cap \mathrm{VR}(t, R \cup\{t\})$ is a tree

(1) Use the conflict list to find an edge which conflicts with t.

Insert a Site t

Lemma

$V(R) \cap \mathrm{VR}(t, R \cup\{t\})$ is a tree

(1) Use the conflict list to find an edge which conflicts with t.
(2) From the edge to find out $V(R) \cap \mathrm{VR}(t, R \cup\{t\})$

Insert a Site t

Lemma

$V(R) \cap \mathrm{VR}(t, R \cup\{t\})$ is a tree

(1) Use the conflict list to find an edge which conflicts with t.
(2) From the edge to find out $V(R) \cap \mathrm{VR}(t, R \cup\{t\})$
(3) Link the leaves of $V(R) \cap \mathrm{VR}(t, R \cup\{t\})$ clockwise

Insert a Site t

Lemma

$V(R) \cap \mathrm{VR}(t, R \cup\{t\})$ is a tree

(1) Use the conflict list to find an edge which conflicts with t.
(2) From the edge to find out $V(R) \cap \mathrm{VR}(t, R \cup\{t\})$
(3) Link the leaves of $V(R) \cap \mathrm{VR}(t, R \cup\{t\})$ clockwise

Insert a Site t

Lemma

$V(R) \cap \mathrm{VR}(t, R \cup\{t\})$ is a tree

(1) Use the conflict list to find an edge which conflicts with t.
(2) From the edge to find out $V(R) \cap \mathrm{VR}(t, R \cup\{t\})$
(3) Link the leaves of $V(R) \cap \mathrm{VR}(t, R \cup\{t\})$ clockwise

Update Conflict Relations: Partial Edges

- Consider an edge e^{\prime} of $V(R \cup\{t\})$ which belongs to an edge e of $V(R)$

Lemma

Any site $s \in S \backslash(R \cup\{t\})$ in conflict with e^{\prime} will conflict with e. That is, if $e^{\prime} \cap \operatorname{VR}(t, R \cup\{t, s\} \neq \emptyset, e \cap \operatorname{VR}(s, R \cup\{t\}) \neq \emptyset$.

- The set of sites in conflict with e^{\prime} is a subset of the set of sites in conflict with e
- For each site in conflict with e, check if it conflicts with e^{\prime}.

Update Conflict Relations: Fully new edges

- Consider an edge e^{\prime} of $V(R \cup\{t\})$ which does not belong to any edge of $V(R)$

Lemma

e^{\prime} and a path of $V(R) \cap \operatorname{VR}(t, R \cup\{t\})$ will form a cycle. Let P be the path in $V(R) \cap \operatorname{VR}(t, R \cup\{t\})$ which forms a cycle with e^{\prime}. Any site $s \in S \backslash(R \cup\{t\})$ in conflict with e^{\prime} will conflict with one edge along the path.

- For each site in conflict with an edge of P, check if it conflicts with e^{\prime}.

The number of updates

Lemma

Each edge of $V(R)$ which is destroyed due to the insertion of t will be check at most 3 times.

- An edge of $V(R)$ contains at most one edge $V(R \cup\{t\})$ and belongs to at most two paths which form a cycle with an edge of $V(R \cup\{t\})$.

Lemma

The time to insert t is proportional to the total size of the conflict lists for the edges of $V(R)$ which are destroyed due to the insertion of t

Thank You!!

