Voronoi Diagram and Delaunay Triangulation Randomized Incremental Construction

Chih-Hung Liu

May 13, 2015

Outline

- Voronoi Diagrams and Delaunay Triangulations
 - Properties and Duality
- Randomized Incremental Construction

• Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision

• Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site $p \in S$ and is denoted by VR(p, S).

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site $p \in S$ and is denoted by VR(p, S).

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site $p \in S$ and is denoted by VR(p, S).

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site $p \in S$ and is denoted by VR(p, S).
 - 2 For each point $x \in VR(p, S)$, p is its closest site in S.

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site $p \in S$ and is denoted by VR(p, S).
 - 2 For each point $x \in VR(p, S)$, p is its closest site in S.
- VR(p, S) is the locus of points closer to p than any other site.

• Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p, q) and D(q, p) separated by B(p, q).

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p, q) and D(q, p) separated by B(p, q).

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p, q) and D(q, p) separated by B(p, q).

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p, q) and D(q, p) separated by B(p, q).

•

$$\mathsf{VR}(p,S) = \bigcap_{q \in S, q \neq p} D(p,q).$$

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p, q) and D(q, p) separated by B(p, q).

•

$$\mathsf{VR}(p,\mathcal{S}) = \bigcap_{q \in \mathcal{S}, q \neq p} D(p,q).$$

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
 - A piece of B(p,q)

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
 - A piece of B(p,q)

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
 - A piece of B(p,q)
- Voronoi Vertex
 - Common intersection among more than two Voronoi regions VR(p, S), VR(q, S), VR(r, S), and so on.

 $x \circ$

• Grow a circle from a point x on the plane

• Grow a circle from a point x on the plane

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
 - Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between VR(p, S) and VR(q, S)

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
 - Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between VR(p, S) and VR(q, S)

Grow a circle from a point x on the plane

 x_{\circ}

- Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between VR(p, S) and VR(q, S)

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
 - Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between VR(p, S) and VR(q, S)
 - Hit more than two sites $p, q, r, ... \in S \rightarrow x$ is the Voronoi vertex among VR(p, S), VR(q, S), VR(r, S), ...

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
 - Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between VR(p, S) and VR(q, S)
 - Hit more than two sites $p, q, r, ... \in S \rightarrow x$ is the Voronoi vertex among VR(p, S), VR(q, S), VR(r, S), ...

• Grow circles from $\forall p \in S$ at unit speed

Grow circles from ∀p ∈ S at unit speed

- Grow circles from ∀p ∈ S at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)

- Grow circles from ∀p ∈ S at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - $x \in \mathbb{R}^2$ is first hit by two circles from p and $q \to x$ belongs to a Voronoi edge between VR(p, S) and VR(q, S)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - $x \in \mathbb{R}^2$ is first hit by two circles from p and $q \to x$ belongs to a Voronoi edge between VR(p, S) and VR(q, S)

- Grow circles from ∀p ∈ S at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - $x \in \mathbb{R}^2$ is first hit by two circles from p and $q \to x$ belongs to a Voronoi edge between VR(p, S) and VR(q, S)
 - $x \in \mathbb{R}^2$ is first hit by three circles from p, q, and $r \to x$ is a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)

Wavefront Model (Growth Model)

- Grow circles from ∀p ∈ S at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - $x \in \mathbb{R}^2$ is first hit by two circles from p and $q \to x$ belongs to a Voronoi edge between VR(p, S) and VR(q, S)
 - $x \in \mathbb{R}^2$ is first hit by three circles from p, q, and $r \to x$ is a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)

 VR(p, S) is unbounded if and only if p is a vertex of the convex hull of S.

- VR(p, S) is unbounded if and only if p is a vertex of the convex hull of S.
 - Select a point c in the convex hull

- VR(p, S) is unbounded if and only if p is a vertex of the convex hull of S.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p

- VR(p, S) is unbounded if and only if p is a vertex of the convex hull of S.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overline{cp}$, x belongs to VR(p, S)

- VR(p, S) is unbounded if and only if p is a vertex of the convex hull of S.
 - Select a point c in the convex hull
 - Shoot a ray cp from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overline{cp}$, x belongs to VR(p, S)

- VR(p, S) is unbounded if and only if p is a vertex of the convex hull of S.
 - Select a point c in the convex hull
 - Shoot a ray cp from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overline{cp}$, x belongs to VR(p, S)
 - \overrightarrow{cp} extends to the infinity.

- VR(p, S) is unbounded if and only if p is a vertex of the convex hull of S.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overline{cp}$, x belongs to VR(p, S)
 - \overrightarrow{cp} extends to the infinity.
- If S is in convex position, V(S) is a tree.

- VR(p, S) is unbounded if and only if p is a vertex of the convex hull of S.
 - Select a point c in the convex hull
 - Shoot a ray cp from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overline{cp}$, x belongs to VR(p, S)
 - \overrightarrow{cp} extends to the infinity.
- If S is in convex position, V(S) is a tree.
- An unbounded Voronoi edge corresponds to a hull edge.

Voronoi Diagram (Mathematic Definition)

Voronoi Diagram V(S)

$$V(S) = R^2 \setminus (\bigcup_{p \in S} VR(p, S)) = \bigcup_{p \in S} \partial VR(p, S)$$

- $\partial VR(p, S)$ is the boundary of VR(p, S)
 - $\partial VR(p, S) \not\subset VR(p, S)$
- V(S) is the union of all the Voronoi edges
- Voronoi Edge e between VR(p, S) and VR(q, S)

$$e = \partial \mathsf{VR}(p, S) \cap \partial \mathsf{VR}(q, S)$$

• Voronoi Vertex v among VR(p, S), VR(q, S), and VR(r, S)

$$v = \partial VR(p, S) \cap \partial VR(q, S) \cap \partial VR(r, S)$$

Complexity of V(S)

Theorem

V(S) has O(n) edges and vertices. The average number of edges of a Voronoi region is less than 6.

- Add a large curve Γ
 - Γ only passes through unbounded edges of V(S)
 - Cut unbounded pieces outside Γ
 - One additional face and several edges and vertices.

Complexity of V(S)

Theorem

V(S) has O(n) edges and vertices. The average number of edges of a Voronoi region is less than 6.

- Euler's Polyhedron Formula: v e + f = 1 + c
 - v: # of vertices, e: # of edges, f: # of faces, and c: # number of connected components.
- An edge has two endpoints, and a vertex is incident to at least three edges.
 - $3v \leq 2e \rightarrow v \leq 2e/3$
- f = n + 1 and c = 1
 - $v = 1 + c + e f = e + 1 n \le 2e/3 \rightarrow e \le 3n 3$
 - $e = v + f 1 c = v + n 1 \ge 3v/2 \rightarrow v \le 2n 2$
- Average number of edges of a region $\leq (6n-6)/n < 6$

Triangulation

Definition

Given a set *S* of points on the plane, a triangulation is maximal collection of non-crossing line segments among *S*.

Triangulation

Definition

Given a set *S* of points on the plane, a triangulation is maximal collection of non-crossing line segments among *S*.

Not Maximal (\overline{pq} is allowable)

Triangulation

Definition

Given a set *S* of points on the plane, a triangulation is maximal collection of non-crossing line segments among *S*.

Triangulation

Delaunay Edge

Definition

An edge \overline{pq} is called **Delaunay** if there exists a circle passing through p and q and containing no other point in its interior.

Delaunay Edge

Definition

An edge \overline{pq} is called **Delaunay** if there exists a circle passing through p and q and containing no other point in its interior.

pq is **Delaunay**

Delaunay Edge

Definition

An edge \overline{pq} is called **Delaunay** if there exists a circle passing through p and q and containing no other point in its interior.

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all **Delaunay**.

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all **Delaunay**.

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

 For each face, there exists a circle passing all its vertices and containing no other point.

No more than two point sites are colinear

- No more than two point sites are colinear
 - V(S) is connected

- No more than two point sites are colinear
 - V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)

- No more than two point sites are colinear
 - V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
 - degree of each Voronoi vertex is exactly 3.

- No more than two point sites are colinear
 - V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
 - degree of each Voronoi vertex is exactly 3.
 - Each face of the Delaunay triangulation is a **triangle**.

- No more than two point sites are colinear
 - V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
 - degree of each Voronoi vertex is exactly 3.
 - Each face of the Delaunay triangulation is a triangle.
 - There is a unique Delaunay triangulation.

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

• A site $p \leftrightarrow$ a Voronoi region VR(p, S)

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow a$ Voronoi region VR(p, S)
- A Delaunay edge $\overline{pq} \leftrightarrow$ a Voronoi edge between VR(p,S) and VR(q,S)

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site p ↔ a Voronoi region VR(p, S)
- A Delaunay edge pq ↔ a Voronoi edge between VR(p, S) and VR(q, S)
- A Delaunay triangle $\triangle pqr \leftrightarrow$ a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)

Algorithms

• Lower Bound for Time: $\Omega(n \log n)$

Algorithms

- Lower Bound for Time: $\Omega(n \log n)$
 - Convex hull of S can be computed in linear time from V(S).

Algorithms

- Lower Bound for Time: $\Omega(n \log n)$
 - Convex hull of S can be computed in linear time from V(S).

- $O(n \log n)$ time algorithms
 - Plane Sweep Algorithm
 - Divide and Conquer Algorithm

Randomized Incremental Construction

General Idea

- Consider a random sequence of S, $(s_1, s_2, ..., s_n)$.
- Let R_i be $\{s_1, ..., s_i\}$
- From i = 4 to i = n 1, construct $V(R_{i+1})$ from $V(R_i)$ by inserting s_{i+1} .

Tasks

- What is a configuration?
- What is a conflict relation?
- How to use conflict relations to insert a site?
- How to update conflict relations?
- General Position Assumption
 - No more than three sites are located on the same circle
 → The degree of a Voronoi vertex is exactly 3
 - No more than two points are located on the same line
 - → The Voronoi diagram is connected

Configuration: A Voronoi edge

- A Voronoi region can not be a configuration because it could consist of O(n) edges, i.e., it is not defined by a constant number of sites
- Consider a Voronoi edge e between VR(p, S) and VR(q, S)
 - $e \subseteq B(p,q)$
 - Assume e has two endpoints v and u. Then $v = \overline{\mathsf{VR}(p,S)} \cap \overline{\mathsf{VR}(q,S)\mathsf{VR}(r,S)}$ and $u = \overline{\mathsf{VR}(p,S)} \cap \overline{\mathsf{VR}(q,S)\mathsf{VR}(s,S)}$.
 - e is defined by p, q, r, s
 - A Voronoi edge is defined by at most 4 sites.

Conflict Relation

• A site $t \in S \setminus R$ conflicts with a Voronoi edge e between VR(p,R) and VR(q,R) if $e \cap VR(t,R \cup \{t\}) \neq \emptyset$.

Conflict Relation

• A site $t \in S \setminus R$ conflicts with a Voronoi edge e between VR(p,R) and VR(q,R) if $e \cap VR(t,R \cup \{t\}) \neq \emptyset$.

Lemma

 $e \cap VR(r, R \cup \{r\}) = e \cap VR(r, \{p, q, r\})$ (Local Test)

Lemma

Lemma

Lemma

 $V(R) \cap VR(t, R \cup \{t\})$ is a tree

Use the conflict list to find an edge which conflicts with t.

Lemma

- Use the conflict list to find an edge which conflicts with t.
- ② From the edge to find out $V(R) \cap VR(t, R \cup \{t\})$

Lemma

- Use the conflict list to find an edge which conflicts with *t*.
- **2** From the edge to find out $V(R) \cap VR(t, R \cup \{t\})$
- **③** Link the leaves of V(R) ∩ $VR(t, R \cup \{t\})$ clockwise

Lemma

- \bullet Use the conflict list to find an edge which conflicts with t.
- **2** From the edge to find out $V(R) \cap VR(t, R \cup \{t\})$
- **3** Link the leaves of $V(R) \cap VR(t, R \cup \{t\})$ clockwise

Lemma

- Use the conflict list to find an edge which conflicts with t.
- **2** From the edge to find out $V(R) \cap VR(t, R \cup \{t\})$
- **3** Link the leaves of $V(R) \cap VR(t, R \cup \{t\})$ clockwise

Update Conflict Relations: Partial Edges

 Consider an edge e' of V(R ∪ {t}) which belongs to an edge e of V(R)

Lemma

Any site $s \in S \setminus (R \cup \{t\})$ in conflict with e' will conflict with e. That is, if $e' \cap VR(t, R \cup \{t, s\} \neq \emptyset, e \cap VR(s, R \cup \{t\}) \neq \emptyset$.

- The set of sites in conflict with e' is a subset of the set of sites in conflict with e
- For each site in conflict with e, check if it conflicts with e'.

Update Conflict Relations: Fully new edges

 Consider an edge e' of V(R ∪ {t}) which does not belong to any edge of V(R)

Lemma

e' and a path of $V(R) \cap VR(t, R \cup \{t\})$ will form a cycle. Let P be the path in $V(R) \cap VR(t, R \cup \{t\})$ which forms a cycle with e'. Any site $s \in S \setminus (R \cup \{t\})$ in conflict with e' will conflict with one edge along the path.

 For each site in conflict with an edge of P, check if it conflicts with e'.

The number of updates

Lemma

Each edge of V(R) which is destroyed due to the insertion of t will be check at most 3 times.

• An edge of V(R) contains at most one edge $V(R \cup \{t\})$ and belongs to at most two paths which form a cycle with an edge of $V(R \cup \{t\})$.

Lemma

The time to insert t is proportional to the total size of the conflict lists for the edges of V(R) which are destroyed due to the insertion of t

Thank You!!