Discrete and Computational Geometry, SS 14 Exercise Sheet "9": Spanners and WSPDs University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Tuesday July 1st, 14:00 pm. There will be a letterbox in the LBH building, close to Room E01.
- You may work in groups of at most two participants.
- Please contact Hilko Delonge, hilko.delonge@uni-bonn.de, if you want to participate and have not yet signed up for one of the exercise groups.
- If you are not yet subscribed to the mailing list, please do so at https://lists.iai.uni-bonn.de/mailman/listinfo.cgi/lc-dcgeom

Exercise 28: \quad Spanners and Closest Pairs

(4 Points)
Let S denote a finite point set in \mathbb{R}^{d}. Let $1<t \leq 2$ and let $G=(S, E)$ be a t-spanner with verex set S and edge set E.
a) Show that for at least one closest pair v, w in S the edge $\{v, w\}$ belongs to E. Furthermore, if $t<2$, this is even true for all closest pairs.
b) Let p be a nearest neighbor of q in S. Does this imply that $\{p, q\}$ belongs to E ?

Exercise 29: WSPD and Centers

(4 Points)
Prove or disprove the following statement: Two point sets A, B with bounding box $R(A)$ and $R(B)$ are well-separated with parameter s, if and only if there are two circles C_{A} und C_{B} of some radius r, where $R(A) \subset C_{A}$, $R(B) \subset C_{B}$ and the distance between C_{A} and C_{B} is $\geq r \cdot s$, and the center of C_{A} and of C_{B} coincides with the center of the bounding box of A and of B, respectively.

Exercise 30: WSPD 2-dimensional Example
 (4 Points)

Consider the point set $S \subset \mathbb{R}^{2}$ depicted twice below. Use the algorithm presented in the lecture to construct a WSPD of S, given the separation ratio $s=1$.

Start with computing the split-tree, and draw the resulting bounding boxes. Use these bounding boxes to construct the WSPD. You may assume that the procedure FindPairs (v, w) only verifies if the two point sets S_{v} and S_{w} are well separated with respect to circles, whose center points are located at the center of the corresponding bounding box.
1)

$\stackrel{\bullet}{p_{6}}$

