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Chapter 5

Geometric firefighting

In this chapter we would like to discuss geometric fireighting settings in the Euclidean plane. We
assume that there is a fire source s (a point in the plane) and the fire spreads in all directions
with the same unit speed 1. This means that the fire can be considered to be an expanding
circle, expanding with speed one over time.

The adversary of the fire expansions can build barriers with some speed b. In the geometric
setting, a barrier is a curve in the plane with given start and endpoint. We consider di↵erent
models. For example, we can assume that the barriers have to be build up successively one
after the other or in parallel. We can also restrict the type of the barrier, barriers can be
restricted to line segment or can be arbitrary curves. Additionally, we consider di↵erent types
of environments.

5.1 Firefighting in a simple polygon

Let us assume that the fire spreads inside a simple polygon P at a single point s. Let us further
assume that a set of m potential line segment barriers, B = {b1, b2, . . . , bm}, is given. Each
barrier, b

i

, has a start point and an end point t
i

on the boundary of P .

All barriers can be build with the same speed b. If |b
i

| is the length of the barrier, its relative

completion time is |bi|
b

. We also assume that the barriers have to be constructed one after the
other. During the construction of the barrier the fire should never reach the current end point
while the barrier is constructed. Any barrier saves a certain amount of the total area of the
polygon. The goal of the barrier construction is, that we would like to find a schedule for a valid
construction of the barriers, that saves a maximal portion of the total area of the polygon. An
example for a polygon, a fire source s and a set of potential barriers is shown in Figure 5.1.

In contrast to the Intruder-Definition given in Section 1.1.1 we define the problem as a firefighter
problems in a simple polygon.

Geometric Firefighter Problem in a simple polygon
Instance: A simple polygon, a fire that spreads from a given starting point s 2 P with speed 1,
a set of m line segment barriers, b1, b2, . . . , bm, which can be successively constructed with the
same speed B.
Output: Compute a valid sequence of barriers that is constructed successively so that the area
protected from the fire is maximized.

As already shown in Theorem 1 in Section 1.1.1 this problem is NP-hard in general. It can
also be shown that it is approximation hard, which means that there is no polynomial time
approximation scheme. Therefore we have to consider constant approximations for the optimal
schedule.

53
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5.2 A general approximation algorithm

In this section we describe a general approach for the approximation of a scheduling problem.
We also relate it to the above firefighting problem.

We consider m jobs b1, b2, . . . , bm with precise latest starting time and duration. That is, the
job b

i

has to be started before time s
i

and has a duration of d
i

.

For a valid schedule of jobs after n processing steps of an algorithm with l
n

entries, we have a
consecutive list of jobs J

n

= (b
n1 , bn2 , . . . , bnln

) which can be scheduled one after the other. Let

s0
nk

 s
nk be the precise starting time of the scheduled jobs. We require

P
j

k=1 s
0
nk

+d
nk  s

nj+1

for j = 1 to l
n

� 1. The next job ha to be started before its starting option ends. This means
that the jobs can be started one after the other without conflicts of the starting times.

Each job b
i

will contribute with a profit A
i

to an overall profit A. Profit A
i

will be attained, if
the job is scheduled. These profits might overlap for di↵erent jobs. Thus, the profit of a job b

i

may change over time, if another job b
j

was scheduled before that also covers parts of the profit
that can be covered by b

i

.

For a current schedule of jobs J
n

we denote the current profit of a job b
j

62 J
n

by A
j

(J
n

). This
depends on the overlapping. More precisely for J

n

= (b
n1 , bn2 , . . . , bnln

) and b
j

62 J
n

we define

A
j

(J
n

) := A
j

\

0

@
[

bnk2Jn

A
nk

1

A .

(Note that here A
nk is the initial overall potential profit of b

nk 2 J
n

but this profit is always
covered by the profit of J

n

, even though some of the profit A
nk was intermediately already

covered by another b
l

in J
n

.)

We start with an empty schedule J0 and successively process one of the remaining jobs. This
job will never be processed any more after that. So for m jobs we are done after m processing
steps.

For the scheduling algorithm and a current schedule J
n

after n steps we sort all non-rejected

and non-scheduled jobs by decreasing relative profits Aj(Jn)
dj

. The profit of the job is considered

in relation to its duration. We apply the following GlobalGreedy procedure to the current job b
j

with maximal Aj(Jn)
dj

:

1. If a job b
j

with current largest value Aj(Jn)
dj

can be scheduled somewhere in J
n

it is inserted

into J
n

for obtaining J
n+1.

2. If the job cannot be scheduled because some of the jobs overlap with its possible execution
interval, we check whether we can delete such (consecutive) jobs out of J

n

with the following
property: For a given constant µ < 1, the profit of the deleted jobs is smaller than µ times
the profit A

j

(J
n

) of job b
j

. Additionally, after deleting the jobs, job b
j

can be scheduled.
All jobs that have been deleted will never be considered again. We build J

n+1 by inserting
b
j

to the remaining list of J
n

. There might be some options for such sequences.

3. If such a sequence of jobs does not exist, job b
j

is rejected and will never be considered
again. J

n+1 := J
n

.

For convenience for the profits in the procedure and also for the jobs we define corresponding
colors. In the beginning all potential profits are colored red. Profits and jobs that will be
scheduled by rule 1. or rule 2. are colored green. A profit (and a job) that was colored green
in the schedule and is rejected later by rule 2. will be colored grey. For a schedule J

n

let J 0
n
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Figure 5.1: Considering the three barriers b1 = (a, b), b2 = (c, d) and b3 = (e, f) with A1 = 1053,
A2 = 162.45 and A3 = 188.75 and speed b = 2. We first the barriers by priority p1 = 702 =
2A1/|b1|, p2 = 1083 = 2A2/|b2| and p3 = 755 = 2A3/|b3|. The intermediate schedule J2 = (b2, b3)
blocks the construction of b1. Since µ · A1 > A3 and (|b1| + |b3|)/2 < d(s, a) holds we delete b3
and insert b1.

denote the list of all jobs that have been inserted during the construction of J
n

. The set J 0
n

also
contains the deleted barriers of color grey and the current barriers of color green.

The above algorithm is a general scheme for a corresponding scheduling problem. We would
like to apply it to our geometric firefighter problem and first give a very simple example. In
Figure 5.1 there is a fire source and a set of potential barriers which are diagonals.

In this setting for convenience we require that the barrier has to be fully constructed before
the fire reaches any point of it. This requirement is not necessary in general but by considering
the closest point from b

i

to s and the duration d
i

of the barrier we can easily compute the a
constraint for b

i

. In general the fire should not have reached the current construction point of
the barrier.

We consider only the barriers b1 = (a, b), b2 = (c, d) and b3 = (e, f) as depicted in Figure 5.1,
where each barrier will be started with its first vertex. We assume that the building speed
is b = 2. Each barrier subdivides the polygon into two parts and potentially would save the
part A

i

that does not contain the fire source. Let |b
i

| denote the lenght of each b
i

, we assume
|b1| = 3, |b2| = 0.3 and |b3| = 0.5. The distance d

P

(s, a) from s to a in P is assumed to be 1.8.
We further have calculated A1 = 1053, A2 = 162.45 and A3 = 188.75 which are the profits of
the barriers in the beginning. For the scheduling algorithm we order them relatively by priority
p
i

= 2Ai
|bi| because d

i

= |bi|
2 is the duration for constructing b

i

. The values in the figure denote
the corresponding priority values p

i

This means that p1 = 702, p2 = 1083 and p3 = 755 holds.
We assume that µ = 0.2.

The scheduling algorithm first chooses b2 and b3 in this order because of the priorities and of
the fact that both barriers can be indeed scheduled in this order. The fire will not reach c and e
after 0.3+0.5

2 = 0.4 time steps. Because (|b1|+ |b2|+ |b3|)/2 = 1.9 exceeds the distance from s to
a in P , in the third step of the process we would like to apply rule 2. Since µ · A1 > A3 holds,
we delete b3 out of the schedule and build b1 instead. The final schedule is J3 = (b2, b1) which
saves A2 and A1. The resulting corresponding color scheme is shown in Figure 5.2.



56 CHAPTER 5. GEOMETRIC FIREFIGHTING

Figure 5.2: The color scheme of the scheduling algorithm for Figure 5.1. After b1 exchanges b3
the profit A3 is colored grey. The part that was not protected remains red-colored. The barriers
are build in the order 1. and 2. as depicted.

The following Lemma relates the green profit with the grey profit, so that we do not loose to
much by deletions. By rule 2. a profit gets color grey, if it was deleted for insertion of a green
profit larger than µ times the grey profit. Therefore we can prove the following relationship. Let
J
m

denote the final schedule for a set of jobs b1, . . . , bm and let J
n

(grey) and J
n

(green) denote
the profits that are colored green and grey during the construction of J

n

.

Lemma 52 By the GlobalGreedy procedure we finally have

J
m

(grey)  µ

1� µ
J
m

(green) . (5.1)

Proof. By induction on number of jobs processed during GlobalGreedy. The lemma holds in
the beginning for the empty schedule J0. Let us assume that the lemma holds after n steps for
J
n

. Consider step n+ 1.

If no job is deleted by rule 1. or rule 3. only the green profit will increase from J
n

to J
n+1 that

is
J
n

(grey) = J
n+1(grey) 

µ

1� µ
J
n

(green)  µ

1� µ
J
n+1(grey) .

If by rule 2. some of the jobs where cancelled out of J
n

for inserting b
j

in the n + 1 step. The
overall profit of the cancelled jobs (that becomes grey now) is smaller than µ times A

j

(J
n

), the
profit of b

j

right now. We conclude

µ

1� µ
J
n+1(green) � µ

1� µ
(J

n

(green) + (1� µ)A
j

(J
n

))

� µ

1� µ
J
n

(green) + µA
j

(J
n

) � J
n

(grey) + µA
j

(J
n

) � J
n+1(grey),

where we used the induction hypothesis for the secon � sign in the second line. 2

For the relationsship between the profit of the final schedule J
m

and an optimal schedule J
opt

we make use of another color, blue.



5.2. A GENERAL APPROXIMATION ALGORITHM 57

For the profits, all profit elements in the optimal schedule J
opt

that are still have color red after
the application of J

m

will be colored blue. So none of the grey and green profits of J
m

become
blue. The blue profit part depends on J

m

and J
opt

, let us denote this profit, by J
m

(blue). It is
clear that

|J
opt

|  J
m

(blue) + J
m

(green) + J
m

(grey) .

holds, we would like to express J
m

(blue) in terms of J
m

(green) and J
m

(grey).

We can assume that the jobs of J
m

are colored green and grey by the schedule. Likewise, we
assign the blue property to the jobs of J

opt

. The blue property is assigned to the first job of J
opt

that covers a portion of the blue profit. Such a job cannot be green or grey, because otherwise
it cannot participate at a the red colored profit at the end of the schedule J

m

. Thus, all three
color classes of jobs are pairwise disjoint.

As already mentioned J 0
m

denote the list of all jobs that have been inserted during the construc-
tion of J

m

. Any green and grey jobs of J 0
m

has obtained a unique execution time, that will not
be changed by the process afterwards (although grey jobs will no longer be scheduled at the
end).

We make use of a scheme that pays money from green and grey jobs to the blue jobs w.r.t. the
execution intervals of the jobs b

i

2 J 0
m

and b
j

2 J
opt

.

1. If the execution interval of b
j

2 J
opt

is fully included in the execution interval of b
i

2 J 0
m

,

the job b
i

pays its green or grey profit times dj

di
< 1 to b

j

.

2. If the execution interval of b
j

2 J
opt

overlaps with the execution interval of b
i

2 J 0
m

, the
job b

i

pays its green or grey profit times 1
µ

to b
j

.

The payment of each green and grey job to the blue jobs has an upper bound w.r.t. their profit.

Lemma 53 Any single green or grey job from J 0
m

pays in total at most 1+ 2
µ

times its profit to
the blue jobs.

Proof. A job b
i

2 J 0
m

has a fixed execution interval I
i

and the start- and endtime of the interval
can only be located inside at most two intervals of jobs from J

opt

which are also executed
successively. This gives at most 2 times 1

µ

the profit of b
i

. For all jobs from b
j

2 J
opt

fully inside

the execution interval I
i

of b
i

a portion dj

di
of b

i

’s profit is payed for d
j

< d
i

. In total this can
only sum up to at most 1. 2

The other way round, any blue job is payed by at least its own profit from the green and grey
jobs.

Lemma 54 Any single blue job from J
opt

achieves at least a payment in the size of its blue
profit from the green and grey jobs.

Proof. We consider a blue job b
j

2 J
opt

. This job was rejected at some step k + 1 and let
J
k

= (b
k1 , bk2 , . . . , bklk ) be the corresponding schedule of the algorithm. For the final exection

time interval of b
j

2 J
opt

consider an consecutive subset J
k

of the jobs of J
k

of mimimal
size whose intervals overlap with the execution time of b

j

, The deletion of J
k

would allows to
schedule b

j

.

The total sum profit of the jobs of J
k

is larger than µ times the current profit A
j

(J
k

) of b
j

which
is currently red. Some of this red part A

j

(J
k

) will become blue at then end but may be not all
of it. In any case µ times the current red part A

j

(J
k

) of b
j

is larger than µ times the final blue
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part of b
j

. On the other hand, the job b
j

had priority less than all previously inserted jobs of

J
k

which is Ai(Jk)
di

� Aj(Jk)
dj

.

We consider the size of J
k

. If |J
k

| = 1 holds for the single job, say b
i

, the execution time of
b
j

2 J
opt

might be fully inside the execution time of b
i

, which gives

A
i

(J
k

)
d
j

d
i

� A
j

(J
k

)
d
i

d
i

= A
j

(J
k

)

where A
i

(J
k

) will be the green or grey profit of b
i

for the final J
m

and A
j

(J
k

) is larger than the
blue profit of b

j

.

For |J
k

| � 1, the execution time interval of b
j

is not fully inside an execution interval of a job in
J
k

, but the execution interval of b
j

overlaps with all execution intervals of the jobs in J
k

, This
gives:

1

µ

X

bi2Jk

A
i

(J
k

) � 1

µ
(µA

j

(J
k

)) = A
j

(J
k

) .

In any case a blue job gets paid with at least its profit form the green and grey jobs. 2

By the above Lemmata we can now estimate the profit of J
m

(blue) in comparison to J
m

(green)
and J

m

(grey). The blue profit is upper bounded by the payment from green and grey jobs, in
turn the payment of green and grey jobs is upper bounded by the profits of green and grey jobs.

We have

J
m

(blue) 
✓
1 +

2

µ

◆
(J

m

(green) + J
m

(grey)) . (5.2)

By Lemma 52 we can now express the profit of J
opt

in terms of J
m

(green), only.

|J
opt

|  J
m

(blue) + J
m

(green) + J
m

(grey) (5.3)


✓
2 +

2

µ

◆
(J

m

(green) + J
m

(grey)) (5.4)

 2(µ+ 1)

µ
(J

m

(green) +
µ

1� µ
J
m

(green)) (5.5)

 2(µ+ 1)

µ

1

1� µ
J
m

(green) (5.6)

 2
µ+ 1

µ(1� µ)
J
m

(green)  2
µ+ 1

µ(1� µ)
|J

m

| . (5.7)

The factor f(µ) := 2 µ+1
µ(1�µ) is minimized for µ =

p
2� 1 and gives f(µ) = 6+4

p
2 ⇡ 11.657 and

our final result.

Theorem 55 For the geometric firefighter problem inside a simple polygon with non-intersecting
barriers there is an approximation algorithms that saves at least 1

6+4
p
2
= 3

2 �
p
2 ⇡ 0.086 times

the area of the optimal barrier solution.

Exercise 21 Verify the computation of the optimization value µ =
p
2�1 and f(µ) = 6+4

p
2 ⇡

11.657.

The result is restriced to non-intersecting barriers. Additionally, we require that any point in
the polygon that can be covered, can already be covered by a single barrier. Otherwise some
barriers b1, b2, . . . , b

l

could help each other for covering a part of the polygon that is not covered
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Figure 5.3: After the usage of barrier (a, b), the priority of barrier (c, d) decreases because (a, b)
already protects parts of the area related to (c, d).

by a single barrier. In this case we can protect new areas A0 which are not related to single
barriers. This is obviously not represented in the algorithm and the analysis.

In principle the algorithm could also run for intersecting barriers but there is one major problem.
The execution time for building a barrier is not independent from the order of the barrier
constructed so far. A barrier might have a release times that depends on the barriers constructed
before. For example a barrier b1 blocks the fire and extends the release time of a barrier b2 that
intersects b1.

So there might be a barrier of the optimal solution, that contributes to the optimal profit with
an arbitrary large amount of its profit but cannot be scheduled in the approximation since it
depends on the construction of a very less important (w.r.t. area profit) barrier. The analysis
might fail.

Exercise 22 Construct an example, where the construction of a barrier b2, depends on the
construction of a barrier b1.

Exercise 23 If intersections are allowed, where is the main problem in the proof of the above
approximation result?

Finally, we end the section with an example where the profit of a job is reduced by overlapping,
as shown in Figure 5.3.
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