Theoretical Aspects of Intruder Search Course Wintersemester 2015/16 Expected Search Number

Elmar Langetepe
University of Bonn

December 1st, 2015

Expected number of vertices saved, Definitions

- $G=(V, E)$ fixed number k of agents
- k-surviving rate, $s_{k}(G)$:

Expectation of the proportion of vertices saved

- Any vertex root vertex with probability $\frac{1}{|V|}$
- Classes, C, of graphs G :

For constant $\epsilon, s_{k}(G) \geq \epsilon$

- Given $G, k, v \in V$:
$\mathrm{sn}_{k}(G, v)$: Number of vertices that can be protected by k agents, if the fire starts at v
- Goal: $\frac{1}{|V|} \sum_{v \in V} \operatorname{sn}_{k}(G, v) \geq \epsilon|V|$
- Class C : Minimum number k that guarantees $s_{k}(G)>\epsilon$ for any $G \in C$
The firefighter-number, $f f n(C)$, of C.

Expected number of vertices saved

Firefighter-Number for a class C of graphs:
Instance: A class C of graphs $G=(V, E)$.
Question: Assume that the fire breaks out at any vertex of a graph $G \in C$ with the same probability. Compute $f f n(C)$.
$f f n(C)$ for trees? For stars?
Planar graph: $\mathrm{ffn}(C) \geq 2$, bipartite graph $K_{2, n-2}$.
Main Theorem: For planar graphs we have $2 \leq f f n(C) \leq 4$

Idea for the upper bound $\mathrm{ffn}(C) \leq 4$

- Vertices subdivided into classes X and Y
- $r \in X$ allows to save many (a linear number of) vertices
- $r \in Y$ allows to save only few (almost zero) vertices
- Finally, $|Y| \leq c|X|$ gives the bound
- Simpler result first!

Theorem 43: For planar graphs G with no 3 - and 4 -cycle, we have $s_{2}(G) \geq 1 / 22$.

- Euler formula, $c+1=v-e+f$, for planar graphs, e edges, v vertices, f faces and c components
- Planar graph with no 3- and 4-cycle has average degree less than $\frac{10}{3}$
- Assume $\frac{10}{3} v \leq 2 e$! Which is $v \leq \frac{3}{5} e$
- Also conclude $5 f \leq 2 e$.
- Insert, contradiction!
- Similar arguments: A graph with no 3-, 4 and 5-cylces has average degree less than 3 !

Theorem 46: For planar graphs G with no 3 - and 4 -cycle, we have $s_{2}(G) \geq 1 / 22$.

Subdivide the vertices V of G into groups w.r.t. the degree and the neighborship

- Let X_{2} denote the vertices of degree ≤ 2.
- Let Y_{4} denote the vertices of degree ≥ 4.
- Let X_{3} denote the vertices of degree exactly 3 but with at least one neighbor of degree ≤ 3.
- Let Y_{3} denote the vertices of degree exacly 3 but with all neighbors having degree >3 (degree 3 vertices not in X_{3}).
Let x_{2}, x_{3}, y_{3} and y_{4} denote cardinality of the sets

Counting the portion for X

Theorem 46: For planar graphs G with no 3 - and 4 -cycle, we have $s_{2}(G) \geq 1 / 22$.

- $|V|=n, x_{2}+x_{3}+y_{3}+y_{4}=n$
- $v \in X_{2}$: save $n-2$ vertices
- $v \in X_{3}$: save $n-2$ vertices
- For starting vertices in Y_{3} and Y_{4}, we assume that we can save nothing!
- Show: $s_{2}(G) \cdot n=\frac{1}{n} \sum_{v \in V} \mathrm{Sn}_{k}(G, v) \geq \epsilon \cdot n$

$$
\frac{1}{n^{2}} \sum_{v \in V} \operatorname{sn}_{k}(G, v) \geq \frac{1}{n^{2}}\left(x_{2}+x_{3}\right)(n-2)=\frac{n-2}{n} \cdot \frac{x_{2}+x_{3}}{x_{2}+x_{3}+y_{3}+y_{4}}
$$

Relationsship between X and Y

Theorem 46: For planar graphs G with no 3 - and 4 -cycle, we have $s_{2}(G) \geq 1 / 22$.

- Fixed relation between $x_{2}+x_{3}$ and $y_{3}+y_{4}$
- First: Correspondance between Y_{3} and Y_{4}
- $G_{Y}=\left(V_{Y}, E_{Y}\right)$: Edges of G with one vertex in Y_{3} and one vertex in Y_{4} (degree at least 4)
- $3 y_{3}$ edges, at most $y_{3}+y_{4}$ vertices, bipartite
- Cylce: Forth and back from Y_{3} to Y_{4}
- No cycle of size 5!
- Average degree of vertices of G_{Y} is at most 3
- Counting $3\left(y_{3}+y_{4}\right)$, counts at least any edge twice, so $3\left(y_{3}+y_{4}\right) \geq 6 y_{3}$
- $y_{3} \leq y_{4}$

Counting edges by vertex degrees

Theorem 46: For planar graphs G with no 3 - and 4-cycle, we have $s_{2}(G) \geq 1 / 22$.

- Fixed relation between $x_{2}+x_{3}$ and $y_{3}+y_{4}, y_{3} \leq y_{4}$
- Counting $\frac{10}{3}\left(x_{2}+x_{3}+y_{3}+y_{4}\right)$ edges we have at least counted $3 x_{3}+3 y_{3}+4 y_{4}$ edges
- $9 x_{3}+9 y_{3}+12 y_{4} \leq 10\left(x_{2}+x_{3}+y_{3}+y_{4}\right)$
- $2 y_{4}-y_{3} \leq 10 x_{2}+x_{3}$
- By $y_{3} \leq y_{4}$ we have $y_{4} \leq 10 x_{2}+x_{3}$
- Finally: $y_{3}+y_{4} \leq 20 x_{2}+2 x_{3} \leq 20\left(x_{2}+x_{3}\right)$

Use the inequality!

Theorem 46: For planar graphs G with no 3 - and 4 -cycle, we have $s_{2}(G) \geq 1 / 22$.

Finally: $y_{3}+y_{4} \leq 20 x_{2}+2 x_{3} \leq 20\left(x_{2}+x_{3}\right)$

$$
\begin{equation*}
\frac{n-2}{n} \cdot \frac{x_{2}+x_{3}}{x_{2}+x_{3}+y_{3}+y_{4}} \geq \frac{n-2}{n} \cdot \frac{x_{2}+x_{3}}{21\left(x_{2}+x_{3}\right)}=\frac{n-2}{21 n} . \tag{1}
\end{equation*}
$$

- $n=2$: one vertex distinct from the root
- $3 \leq n \leq 44$: at least $\frac{2}{44}$
- $n \geq 44: s_{2}(G) \geq \frac{42}{21 \cdot 44}=\frac{1}{22}$.
- Expected value of saved vertices is always $\frac{1}{22} n$.

Warm up for planar graphs

Theorem 47: Using four firefighters in the first step and then always three firefighters in each step, for every planar graph G there is a strategy such that $s_{4}(G) \geq \frac{1}{2712}$ holds.

- Maximal, planar without multi-edges.
- Triangulation, any face has exactly 3 edges
- Subdivide V of G into sets X and Y.
- X set of vertices strategy that save at least $n-6$ vertices
- For Y we do not expect to save any vertex, for $|V|=n$
- Final conclusion: For $\alpha=\frac{1}{872}$

$$
\begin{equation*}
|Y| \leq\left(93+\frac{3}{\alpha}\right)|X|=2709|X| \tag{2}
\end{equation*}
$$

Warm up for planar graphs

Theorem 47: Using four firefighters in the first step and then always three firefighters in each step, for every planar graph G there is a strategy such that $s_{4}(G) \geq \frac{1}{2712}$ holds.

$$
\begin{equation*}
|Y| \leq\left(93+\frac{3}{\alpha}\right)|X|=2709|X| \tag{3}
\end{equation*}
$$

Thus from $|X|+|Y|=|V|=n$ we conclude

$$
s_{4}(G) \geq \frac{n-6}{n} \cdot \frac{|X|}{|X|+|Y|} \geq \frac{n-6}{n} \cdot \frac{|X|}{2710|X|}=\frac{n-6}{2710 n} .
$$

For $n \geq 10846$ we have

$$
s_{4}(G) \geq \frac{1}{2710}-\frac{6}{4 \cdot 2710^{2}} \geq \frac{2710-3 / 2}{2710^{2}} \geq \frac{1}{2712}
$$

For $2 \leq n<10846$ we save at least $\min (4, n-1)$ in the first step, which gives also $s_{4}(G) \geq \frac{1}{2712}$.

- For degree $3 \leq d \leq 6$ let X_{d} denote the vertices that guarantee to save at least $|V|-6$ vertices.
- All other vertices form the set Y_{d} for $d \geq 5$.

Vertex v of degree 1, 2, 3, 4 belongs to X !
Vertex v of degree 5 with neighbor u of degree at most 6 :
$v \in X_{5}$ by construction, fire spreads to u and is stopped then!

Lemma 48: For a vertex $v \in Y_{6}$ there is a path of length at most 3 from v to a vertex u that has degree distinct from v (i.e., $\neq 6$) and the inner vertices of the path have degree exactly 6 .

- If not, vertex v belongs to X_{6} ! Build a Hexagon!

Lemma 49: A vertex with $d(v) \geq 7$ has at most $\left\lfloor\frac{1}{2} d(v)\right\rfloor$ neighbors in Y_{5}.

- neighbor $u \in Y_{5}$ has two neighbors n_{1} and n_{2} in common with v
- n_{1} or n_{2}, degree at most 6 , then $u \in X_{5}$
- Vertices u from Y_{5} around v, separated by vertices of degree ≥ 7

Lemma 50: For a simple, maximal planar graph we have

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)=-12 . \tag{4}
\end{equation*}
$$

- maximal, simple planar graph gives $3 f=2 e$ (all faces are triangles)
- $\sum_{v \in V} d(v)=2 e$
- Euler formula: $v-e+f=2$
- $v-e+\frac{2}{3} e=2 \Longleftrightarrow 2 e-6 v=-12$
- Intitial potential $p_{1}(v):=(d(v)-6)$ of every vertex
- Distribute (cost neutral) to $p_{2}(v)$
- $\sum_{v \in V} p_{1}(v)=\sum_{v \in V} p_{2}(v)=-12$

The rules for the distribution are as follows:
Rule A: A vertex v of degree at least 7 gives a value of $\frac{1}{4}$ to each neighbor vertex from Y_{5}.
Rule B: For a vertex $v \in Y_{6}$ we choose exactly one vertex u with $d(u) \neq 6$ and distance $d(v, u) \leq 6$ as in Lemma 48. The vertex u gives a value of $\alpha>0$ to v.

Lemma 48: For a vertex $v \in Y_{6}$ there is a path of length at most 3 from v to a vertex u that has degree distinct from v (i.e., $\neq 6$) and the inner vertices of the path have degree exactly 6.

Rule A: A vertex v of degree at least 7 gives a value of $\frac{1}{4}$ to each neighbor vertex from Y_{5}.
Rule B: For a vertex $v \in Y_{6}$ we choose exactly one vertex u with $d(u) \neq 6$ and distance $d(v, u) \leq 3$ as in Lemma 48. The vertex u gives a value of $\alpha>0$ to v.

Lemma 50: There is a constant $\alpha>0$ such that a distribution by Rule A and B gives $\sum_{v \in V} p_{1}(v)=\sum_{v \in V} p_{2}(v)=-12$ and for every $v \in X$ we have $p_{2}(v)>-3-93 \alpha$ and for every $v \in Y$ we have $p_{2}(v) \geq \alpha$.
Conclusion: $\alpha=\frac{1}{872}$ will do the job.

$$
\begin{gathered}
-12=\sum_{v \in V} p_{2}(v) \geq(-3-93 \alpha)|X|+\alpha|Y| \\
|Y| \leq\left(93+\frac{3}{\alpha}\right)|X|<2790|X|
\end{gathered}
$$

Planar graphs!

Theorem 47: Using four firefighters in the first step and then always three firefighters in each step, for every planar graph G there is a strategy such that $s_{4}(G) \geq \frac{1}{2712}$ holds.

- Maximal, planar without multi-edges.
- Triangulation, any face has exactly 3 edges
- Subdivide V of G into sets X and Y.
- X set of vertices strategy that save at least $n-6$ vertices
- For Y we do not expect to save any vertex, for $|V|=n$
- Final conclusion: For $\alpha=\frac{1}{872}$

$$
\begin{equation*}
|Y| \leq\left(93+\frac{3}{\alpha}\right)|X|=2709|X| \tag{5}
\end{equation*}
$$

Theorem 47: Using four firefighters in the first step and then always three firefighters in each step, for every planar graph G there is a strategy such that $s_{4}(G) \geq \frac{1}{2712}$ holds.

$$
\begin{equation*}
|Y| \leq\left(93+\frac{3}{\alpha}\right)|X|=2709|X| \tag{6}
\end{equation*}
$$

Thus from $|X|+|Y|=|V|=n$ we conclude

$$
s_{4}(G) \geq \frac{n-6}{n} \cdot \frac{|X|}{|X|+|Y|}>\frac{n-2}{n} \cdot \frac{|X|}{2710|X|}=\frac{n-6}{2710 n} .
$$

For $n \geq 10846$ we have

$$
s_{4}(G) \geq \frac{1}{2710}-\frac{6}{4 \cdot 2710^{2}} \geq \frac{2710-3 / 2}{2710^{2}} \geq \frac{1}{2712}
$$

For $2 \leq n<10846$ we save at least $\min (4, n-1)$ in the first step, which gives also $s_{4}(G) \geq \frac{1}{2712}$.

Rule B: Potential distribution!

Rule B: For a vertex $v \in Y_{6}$ we choose exactly one vertex u with $d(u) \neq 6$ and distance $d(v, u) \leq 6$ as in Lemma 48. The vertex u gives a value of $\alpha>0$ to v.

How often can a vertex u with $d(u) \neq 6$ give a potential of α to some vertex v ? Rough upper bound with respect to the maximal distance ≤ 3 from u.

- Distance 1: $d(v)$ times to a direct neighbor, if all of them are in Y_{6}. This gives $1 \cdot d(u)$.
- Distance 2: For all $d(v)$ neighbors of the first case, at most 5 times, if the $d(v)$ neighbors of the above case have degree 6 and all 5 remaining neigbors are from Y_{6}. This gives $5 \cdot d(u)$.
- Distance 3: For all vertices of the second case, at most 5 times, if the vertices of the second case all have degree 6 and the remaining neighbors are from Y_{6}. This gives $25 \cdot d(u)$.

Rule B: Potential distribution!

Altogether, any vertex u with $d(u) \neq 6$ can give a potential α at most $(1+5+25) d(u)=31 d(u)$ times.

Upper bounds for the potential $p_{2}(v)$:

- $v \in X_{3}$: We have $p_{2}(v) \geq-3-93 \alpha$ because $d(v)=3$ and $p_{1}(v)=-3$.
- $v \in X_{4}$: We have $p_{2}(v) \geq-2-124 \alpha$ because $d(v)=4$ and $p_{1}(v)=-2$.
- $v \in X_{5}$: We have $p_{2}(v) \geq-1-155 \alpha$ because $d(v)=5$ and $p_{1}(v)=-1$.
Vertices of degree 6:
- $v \in X_{6}: p_{2}(v)=0$ because $d(v)=6$ and $p_{1}(v)=0$.
- $v \in Y_{6}: p_{2}(v)=p_{1}(v)+\alpha=\alpha$

Rule B gives a single value α from some u to v, and by Lemma 48 such a vertex has to exist.

Rule B: Potential distribution!

Vertices of degree 6:

- $v \in X_{6}: p_{2}(v)=0$ because $d(v)=6$ and $p_{1}(v)=0$.
- $v \in Y_{6}: p_{2}(v)=p_{1}(v)+\alpha=\alpha$

Rule B gives a single value α from some u to v, and by Lemma 48 such a vertex has to exist.

Rule A: Potential distribution!

Rule A: A vertex v of degree at least 7 gives a value of $\frac{1}{4}$ to each neighbor vertex from Y_{5}. (No more than $\left\lfloor\frac{1}{2} d(v)\right\rfloor$ by Lemma 49!)

Vertex v and $d(v) \geq 7$

$$
p_{2}(v) \geq(d(v)-6)-\left\lfloor\frac{1}{2} d(v)\right\rfloor \cdot \frac{1}{4}-31 d(v) \alpha .
$$

So the remaining cases can be estimated by

- $v \in X \cup Y$ with $d(v)=7: p_{2}(v) \geq \frac{1}{4}-217 \alpha$.
- $v \in X \cup Y$ with $d(v) \geq 8: p_{2}(v) \geq d(v)\left(\frac{7}{8}-31 \alpha\right)-6$ by $\left\lfloor\frac{1}{2} d(v)\right\rfloor \cdot \frac{1}{4} \leq \frac{1}{8} d(v)$.
$\alpha=\frac{1}{218 \cdot 4}=\frac{1}{872}$ gives $p_{2}(v) \geq \alpha$

Remaining vertices!

$\alpha=\frac{1}{218 \cdot 4}=\frac{1}{872}$ gives $p_{2}(v) \geq-\alpha-93 \alpha$
Upper bounds for the potential $p_{2}(v)$:

- $v \in X_{3}$: We have $p_{2}(v) \geq-3-93 \alpha$ because $d(v)=3$ and $p_{1}(v)=-3$.
- $v \in X_{4}$: We have $p_{2}(v) \geq-2-124 \alpha$ because $d(v)=4$ and $p_{1}(v)=-2$.
- $v \in X_{5}$: We have $p_{2}(v) \geq-1-155 \alpha$ because $d(v)=5$ and $p_{1}(v)=-1$.
Vertices of degree 6:
- $v \in X_{6}: p_{2}(v)=0$ because $d(v)=6$ and $p_{1}(v)=0$.
- $v \in Y_{6}: p_{2}(v)=p_{1}(v)+\alpha=\alpha$

Rule B gives a single value α from some u to v, and by Lemma 48 such a vertex has to exist.

Lemma 50: There is a constant $\alpha>0$ such that a distribution by Rule A and B gives $\sum_{v \in V} p_{1}(v)=\sum_{v \in V} p_{2}(v)=-12$ and for every $v \in X$ we have $p_{2}(v)>-3-93 \alpha$ and for every $v \in Y$ we have $p_{2}(v) \geq \alpha$.

Overall conclusion:
Theorem 47: Using four firefighters in the first step and then always three firefighters in each step, for every planar graph G there is a strategy such that $s_{4}(G) \geq \frac{1}{2712}$ holds.

Monotone Search vs. Non-monotone search

Lemma 50:

Connnected Search vs. non-connected search

- Non-connected, other rules!
- Differ in a factor of 2
(1) Place a team of p guards on a vertex.
(2) Move a team of m guards along an edge.
(3) Remove a team of r guards from a vertex.

Connnected Search vs. non-connected search

D_{k} denote a tree with root r of degree three and three full binary trees, B_{k-1}, of depth $k-1$ connected to the r.

Lemma 31: For the graph D_{k}, we conclude $\operatorname{cs}\left(D_{k}\right)=k+1$.

- Consider T_{1}, T_{2} and T_{3} at r !

Connnected Search vs. non-connected search

D_{k} denote a tree with root r of degree three and three full binary trees, B_{k-1}, of depth $k-1$ connected to the r.

Lemma 32: For $D_{2 k-1}$ we conclude $s\left(D_{2 k-1}\right) \leq k+1$.

- $k=1$ is trivial. So assume $k>1$
- Place one agent at the root r and successively clean the copies of $B_{2 k-2}$ by k agents
- This is shown by induction!

$$
B_{2(k+1)-2}
$$

Connnected Search vs. non-connected search

Corollary 33: There exists a tree T so that $c s(T) \leq 2 s(T)-2$ holds.
$T=D_{2 k-1}, s\left(D_{2 k-1}\right) \leq k+1, \operatorname{cs}\left(D_{2 k-1}\right)=2 k$

$$
\frac{c s(T)}{s(T)}<2 \text { for all trees } T .
$$

