Online Motion Planning MA-INF 1314 Bug-Algorithm

Elmar Langetepe University of Bonn

Repetition: Pledge Algorithm with sensor errors

Pledge-like curve!

Def. \mathcal{K} class of curves in $\mathcal{C}_{frei} \cup \mathcal{C}_{halb}$, with the following conditions:

- 1. Parameterized curve with turn-angles and position: $C(t) = (P(t), \varphi(t)) \text{ mit } P(t) = (X(t), Y(t))$
- 2. Curve surrounds obstacel by Left-Hand-Rule
- 3. Leavs point is a vertex of an obstacle
- 4. C_{free} -condition holds: $\forall t_1, t_2 \in C : P(t_1), P(t_2) \in C_{\text{free}} \Rightarrow |\varphi(t_1) - \varphi(t_2)| < \pi$
- 5. C_{half} -condition holds: $\forall h_i, t \in C : P(t) = P(h_i) \Rightarrow \varphi(t) - \varphi(h_i) < \pi$

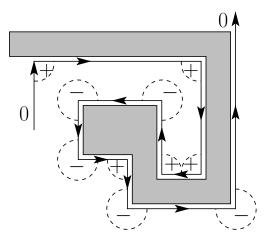
Rep.: Proof correctness

- Lemma Curves from \mathcal{K} do not self-intersect.
- ▶ Lemma Curves from *K* hit any edge once.
- Lemma For any curve from *K*: Obstacle will no longer be left, then the curve is enclosed by the obstacle. ■
- **Theorem** Curves from \mathcal{K} escape, if this is possible.

Rep.: Applications of the model

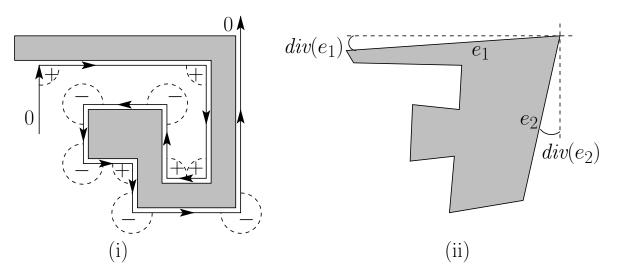
Corollary Compass with deviation maximal $\frac{\pi}{2}$ is sufficient for escaping from a labyrinth.

Corollary Axis-parallel scene, hold the direction in the range $\left(-\frac{\pi}{2}, +\frac{\pi}{2}\right)$ and distinguish between horizontal and vertical. Escape!



Rep: Pseudo orthogonal

- Small devaitions at the vertices! From global coordinates!
- 1. Condition: Numbers convex vert. = reflex vert. + 4
- Small deviations!
- ${\rm div}(e):e=(v,w)$ smallest deviation from horizontal/vertical line passing durch v und w
- $\operatorname{div}(P) := \max_{e \in P} \operatorname{div}(e) \le \delta$, **Def.:** δ -pseudo orthogonal scene



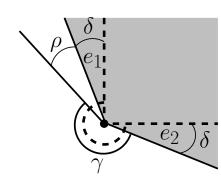
Rep: δ -pseudo orthogonal

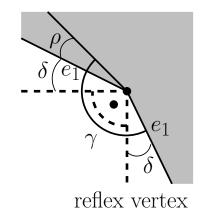
Corollary δ -pseudo-orthogonal scene P. Measure angles with precision ρ s.th. $\delta + \rho < \frac{\pi}{4}$. Deviation in the free space always smaller than $\frac{\pi}{4} - 2\delta - \rho$ from global starting direction. Escape from a labyrinth is guaranteed

- 1. Distinguish reflex/convex corners: Counting the turns!
- 2. Max. global deviation of starting direction: Intervall π
- 3. Distinguish: Horizontal/Vertical

Rep.: δ -pseudo orthogonal scene

- Precision ρ with $\delta + \rho < \frac{\pi}{4}$
- Free-space max. deviation $\frac{\pi}{4} 2\delta \rho$
- 1. Distinguish reflex/convex corners: Worst-case

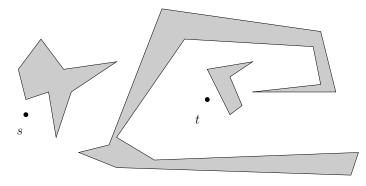




convex vertex

Find a target point

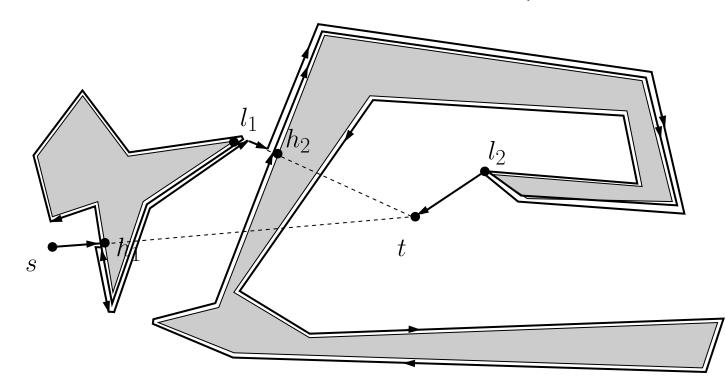
- Searching for a given goal: Navigation
- Polygonal environment: Finite number of polygons
- Touch sensor: Hand-Rules
- Start s, target t, coordinates are given **I**
- Finite storage: I.e. Own coordinates
- BUG Algorithms: Sojourner



Notations

- |pq| distance between p and q
- D := |st| distance from start to goal
- Π_S path of strategy S from start to goal
- $|\Pi_S|$ length of the path Π_S
- UP_i perimeter of obstacle P_i .
- Actions:
 - 1. Move into direction of the target
 - 2. Follow the wall
- Leave-Points l_i , Hit-Points h_i

BUG1 Strategie: Lumelsky/Stepanov



BUG1 Strategie: Lumelsky/Stepanov

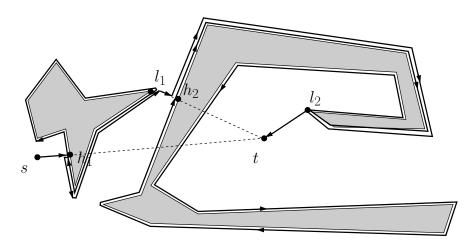
- 0. $l_0 := s$, i := 1
- **1**. From l_{i-1} move into target direction, until
 - (a) Goal is reached: Stop!
 - (b) An obstacle is met at h_i .
- 2. Surround the obstacle O in cw order continuously calculate and store the point l_i on O closest to t —, until
 - (a) Goal is reached: Stop!
 - (b) h_i is visited again!
- 3. Move along the shortest path along O to l_i .
- 4. Increment i, GOTO 1.

Correctness BUG1 strategy

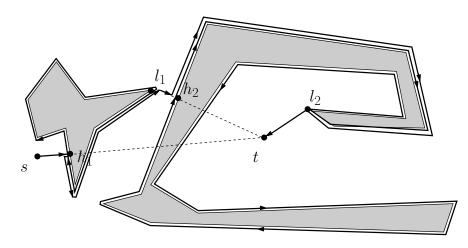
Theorem The strategy BUG1 finds a path from s to t, if such a path exists.

Proof:

- Sequence of Hit- and Leave-Points h_i , l_i
- $|st| \ge |h_1t| \ge |l_1t| \dots \ge |h_kt| \ge |l_kt|$



Theorem Correctness BUG1 strategy

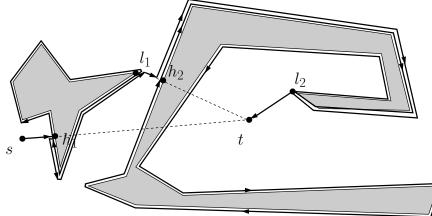


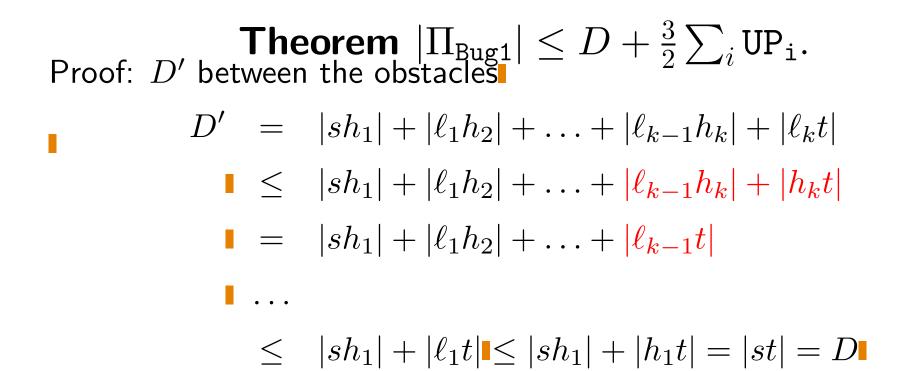
- Point with smallest distance to t: Leave-Point l_i
- No free movement to $t \Rightarrow$ enclosed
- $l_i \neq l_j$, new obstacle!
- Finitely many obstacles \Rightarrow correctness

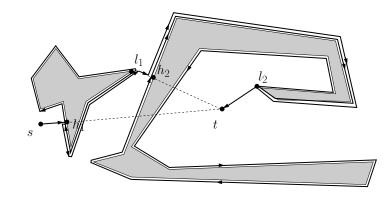
Path length BUG1 Strategy

Theorem Let Π_{Bug1} be the path from s to t, calculated by the BUG1-strategy. We have: $|\Pi_{\text{Bug1}}| \le D + \frac{3}{2} \sum_{i} \text{UP}_i$. Proof:

- Subdivision: Free space path, surrounding
- Surrounding, then shortest path to l_i
- $\frac{3}{2} \sum UP_i$
- Finally: Path D' between the obstacles





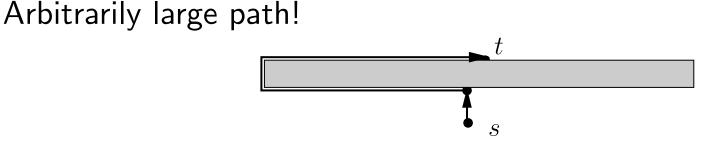


Lower bound?

- Show: Bug1 is $\frac{3}{2}$ -competitive
- Surround the obstacles along the path.
- **Corollary** Bug1 is $\frac{3}{2}$ -competitive
- Adversary strategy for the model
- Actions:
 - 1. Move into direction
 - 2. Follow the wall
- Leave-Points l_i , Hit-Points h_i

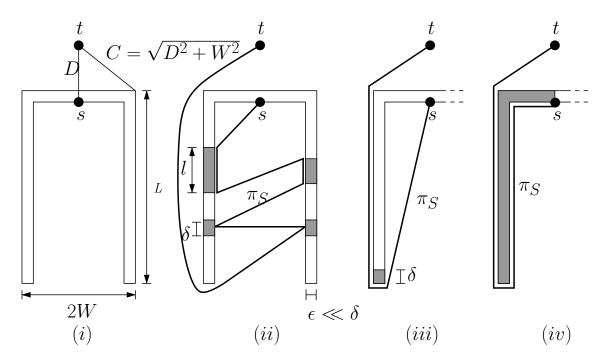
Lower bound

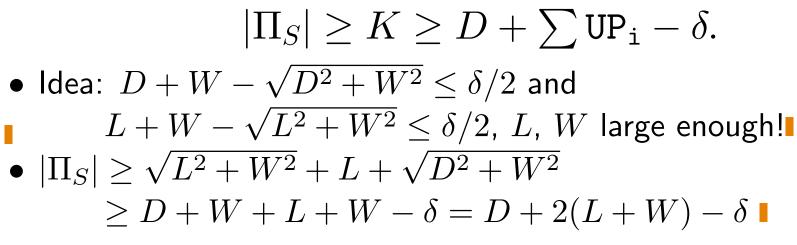
Theorem For any strategy S (due to the action-model), and for any K > 0, there exist a strategy with arbitrary D > 0, such tthat for any $\delta > 0$: $|\Pi_S| \ge K \ge D + \sum \text{UP}_i - \delta$.

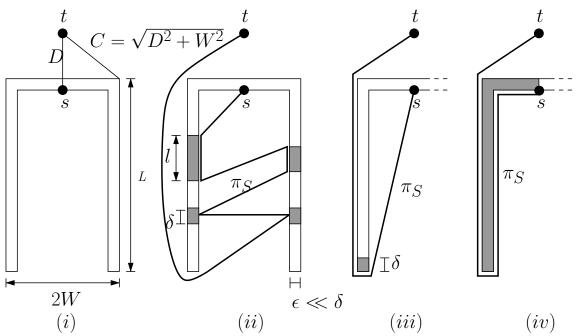


$|\Pi_S| \ge K \ge D + \sum UP_i - \delta.$

- Virtual horse-shoe, Width 2W, Thickness $\epsilon \ll \delta$, Length L, Distance D
- Virtual gets precise: Touch the wall!
- \bullet For any strategy S \blacksquare

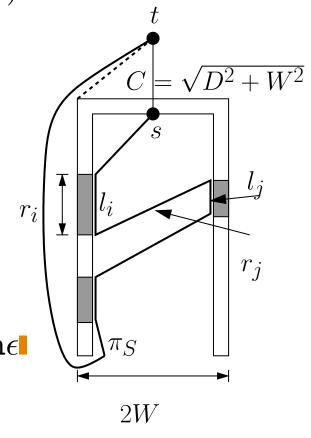






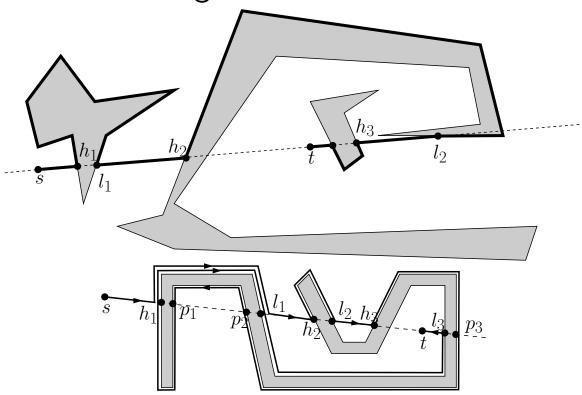
$|\Pi_S| \ge K \ge D + \sum UP_i - \delta.$

- Problem: Left and right part! Peri. 4(L+W)
- Inside horse-shoe: $|\Pi_{I_1}| \ge \sum \frac{1}{2} UP_i$ non-overlapping
- $|\Pi_{I_2}| \ge \sum UP_j$ overlapping, r_j path back
- Outside horse-shoe: $|\Pi_A| \geq L + C$ with $C = \sqrt{D^2 + W^2}$
- $L_{A_1} \ge \sum \frac{1}{2} UP_i$ for non-overlapping
- Altogether: $|\Pi_S| \ge \sqrt{D^2 + W^2} + \sum UP_i 2n\epsilon$
- $n \leq \frac{2L}{\delta}$, $\epsilon \leq \delta^2/(4L)$ gives $2n\epsilon \leq \delta/2$ [
- $|\Pi_S| \le D + W + \sum UP_i \delta$



BUG2 strategy

Line G passing st, target direction, surround obstacle, shortest curr. distance on G, move to target



BUG2 strategy

0. $l_0 := s, j := 1$

1. From l_{j-1} move toward target, until

- (a) Goal is reached: Stop!
- (b) Obstacle is met at h_j .
- 2. Surround obstacle cw order, until
 - (a) Goal is reached: Stop!
 - (b) Line G passing st is visited at q, $|qt| < |h_jt|$ and \overline{qt} locally free for a move

 $l_j := q$, j := j + 1 and GOTO 1.

(c) h_j is reached again, no point q of case b) was found. Reaching the goal is impossible.

BUG2 strategy: Analysis

- Structural properties
- Correctness and performance
- Lemma Bug2 visits finitely many obstacles

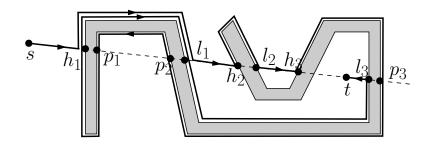
Proof, by precondition for the scene!



BUG2 Strategie: Eigenschaft

Lemma Let n_i denote the number of intersections between G (line passing st) and the obstacle P_i . Any boundary point of P_i is visited at most $\frac{n_i}{2}$ time.

- Bug2 defines pairs (h_j, l_j) of hit- and leave points
- Jumping cond.: $|h_jt| > |l_jt| > |h_{j+1}t|$.
- Any intersection with P_i is only once a leave or a hit point
- Meet current hit point \Rightarrow Stop



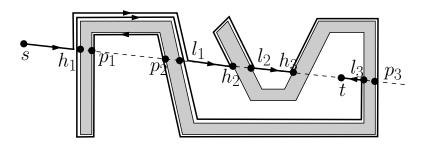
Bug2 visits boundary points max $\frac{n_i}{2}$ times

- Pairs (h_j, l_j) of hit- leave points
- $\frac{n_i}{2}$ pairs (h_j, l_j)
- Only then a surrounding is started
- Point on the boundary only $\frac{n_i}{2}$ times

BUG2 strategy: Correctness

Corollary Bug2 visits the goal, if this is possible.

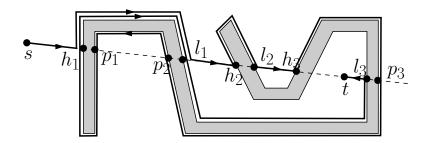
- Finitely many visits, finitely many surroundings!
- Either goal is found or current hit point is visited again
- Current hit point ⇒ no free path from a better point on the boundary. Goal is enclosed!



BUG2 strategy: Performance

Theorem Let Π_{Bug2} denote the path from s to t designed by BUG2. We have $|\Pi_{\text{Bug2}}| \leq D + \sum_{i} \frac{n_i \text{UP}_i}{2}$. Proof:

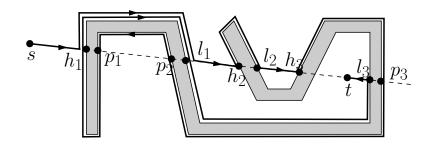
- Subdivision: Surroundings, Free path
- $\sum_{i} \frac{n_i UP_i}{2}$ follows from the **Lemma**
- Length D' between ostacles



BUG2 strategy: Performance

- Length D' between obstacles
- Analogously **BUG1 Theorem** $D' \leq D$
- Altogether:

$$|\Pi_{\text{Bug2}}| \le D + \sum_{i} \frac{n_i \text{UP}_{i}}{2}.$$

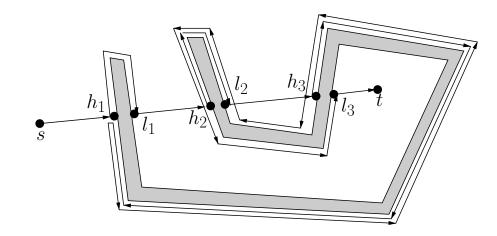


Compare BUG2 and BUG1

- BUG2 not always better, sometimes worse (Exercise)
- Convex polygons: Optimal
- Many further variants!
- Visibility/Local improvements!

Change I

- Bug1 fully surrounds
- Bug2 avoids, but visits many times
- Change make use of old Leave/Hit Points, **One** order change!



Pseudocode: Change I

0. $\ell_0 := s$, i := 1

- 1. Move from ℓ_{i-1} along line passing st toward goal, until
 - (a) Goal is reached: Stop!
 - (b) Obstacle is met at h_i .
- 2. Surround ostacle cw order, until
 - (a) Goal is reached: Stop!

(b) Line G passing st is visited at q, $|qt| < |h_jt|$ and \overline{qt} locally free for a move, $l_j := q$, j := j + 1 and GOTO 1.

- (c) A hit- or leave point h_j or ℓ_j with j < i is met. Move back to h_i , use ccw order until (a), (b) oder (d) happens.
- (d) h_j is reached again, no point q of case b) was found. Reaching the goal is impossible.