Chih-Hung Liu

Taiwan

B. S., Computer Science, National Taiwan University

Ph. D, Electronics Engineering, National Taiwan University

chliu@uni-bonn.de

Discrete and **Computational** Geometry

What is discrete geometry?

- Discrete sets: points, lines, circles in \mathbb{R}^d
- Structural Properties
- I. n lines in the plane

Q: How many regions?

II. n points in the plane

Q: How many of them have the same distance?

Jiři Matoušek, Lecutes on Discrete Geometry

What is computational geometry?

Algorithms for solving geometry problems

Example Convex hulls

Time: $O(n \log n)$

Dynamic Convex hull, 3D convex hull, and convex polytope.

Ketan Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms

Randomized Incremental Algorithms for Geometry Structure

- Quick Sort and Search
- Vertical Trapezoidal Decomposition
- General Theoretical Foundations
- Dynamic Setting (optionl)

A *probability space* has three components:

- 1. a sample space Ω , which is the set of all possible outcomes of the random process modeled by the probability space;
- 2. a family \mathcal{F} representing the allowable events, where each set in \mathcal{F} is a subset of the sample space; and
- 3. a probability function $\Pr: \mathcal{F} \to R$ satisfying the following:
 - for any event $E, 0 \leq \Pr(E) \leq 1$
 - $Pr(\Omega) = 1$; and
 - for any finite or countably infinite sequence of pairwise mutually disjoint events E_1, E_2, E_3, \ldots ,

$$\Pr(\bigcup_{i\geq 1}) = \sum_{i\leq q} \Pr(E_i)$$

Example 1:

One dice

- Ω {1, 2, 3, 4, 5, 6, }
- $\mathcal{F} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{1,6\}, \{2,3\}, \{2,4\}, \{2,5\}, \{2,6\}, \{3,4\}, \{3,5\}, \{3,6\}, \{4,5\}, \{4,6\}, \{5,6\}, \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,2,6\}, \{1,3,4\}, \{1,3,5\}, \{1,3,6\}, \{1,4,5\}, \{1,4,6\}, \{1,5,6\}, \{2,3,4\}, \{2,3,5\}, \{2,3,6\}, \{2,4,5\}, \{2,4,6\}, \{2,5,6\}, \{3,4,5\}, \{3,4,6\}, \{3,5,6\}, \{4,5,6\}, \{1,2,3,4\}, \{1,2,3,5\}, \{1,2,3,6\}, \{1,2,4,5\}, \{1,2,4,6\}, \{1,2,5,6\}, \{1,3,4,5\}, \{1,3,4,6\}, \{1,3,5,6\}, \{1,2,3,4,5\}, \{1,2,3,4,6\}, \{2,3,5,6\}, \{1,2,4,5,6\}, \{1,3,4,5,6\}, \{1,2,3,4,5\}, \{1,2,3,4,5,6\},$
- $\Pr(\{1\}) = \frac{1}{6}, \Pr(\{1, 4, 5\}) = \frac{1}{2}, \dots$

Example 2: Two identical dices

- $\Omega = \{\{1,1\},\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,2\},\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{3,3\},\{3,4\},\{3,5\},\{3,6\},\{4,4\},\{4,5\},\{4,6\},\{5,5\},\{5,6\},\{6,6\}\}.$ ($|\Omega| = 21$)
- $|\mathcal{F}| = 2^{21}$
- $\Pr(\{1,1\}) = \frac{1}{36}, \ \Pr(\{1,4\}) = \frac{1}{18}, \ \Pr(\{\{1,1\},\{1,4\}\}) = \frac{1}{12}, \ \Pr(\{\{1,3\},\{1,4\}\}) = \frac{1}{9}, \dots$

A random variable X on a sample space Ω is a real-valued function on Ω , i.e., $X : \Omega \to R$. A discrete random variable is a random variable that takes on only a finite or countably infinite number of values.

Example 3

Sum of two different dices.

- Let X be the random variable representing the sum of the two dices.
- $\Pr(X = 4) = \Pr(\{(1,3), (2,2), (3,1)\}) = \frac{1}{12}$

The *expectation* of a discrete random variable X, denoted by E[X], is given by

$$E[X] = \sum_{i} i \Pr(X = i),$$

where the summation is over all values in the range of X.

Example 3

 \boldsymbol{X} is the random variable representing the sume of the two dices.

$$E[X] = \sum_{2 \le i \le 12} i \Pr(X = i)$$

= $2 \times \frac{1}{36} + 3 \times \frac{1}{18} + 4 \times \frac{1}{12} + 5 \times \frac{1}{9} + 6 \times \frac{5}{36} + 7 \times \frac{1}{6} + 8 \times \frac{5}{36} + 9 \times \frac{1}{9}$
+ $10 \times \frac{1}{12} + 11 \times \frac{1}{18} + 12 \times \frac{1}{36} = 7$

[Linearity of Expectations]:

For *n* any finite collection of discrete random variable X_1, X_2, \ldots, X_n with finite expectations,

$$E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i].$$

Example 4

 \boldsymbol{X} is the random variable representing the sum of the two dices.

• Let X_i be the value of the i^{th} dice. Then $X = X_1 + X_2$.

•
$$E[X_i] = \sum_{1 \le i \le 6} i \times \frac{1}{6} = 3.5$$

• $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2] = 7$

1. Quick Sort And Search

Input: a set N of n real numbers (distinct) Output: an ordered sequence of N

\mathbf{Qucik} - $\mathbf{Sort}(N)$

- 1. If |N| = 1, return N.
- 2. Select a number p from N
- 3. Let N_L be $\{l \mid l \in N \text{ and } l < p\}$ Let N_R be $\{r \mid r \in N \text{ and } r > p\}$
- 4. If $|N_L| > 0$, $L = \text{Quick-Sort}(N_L)$; else $L = \emptyset$
- 5. If $|N_R| > 0$, $L = \text{Quick-Sort}(N_R)$; else $R = \emptyset$
- 6. return a sequence L, p, R

Expected Time Complexity

- If a subset has k elements, it takes O(k) comparisons.
- If a level has m subsets, N_1, N_2, \ldots, N_m , since they are distinct, a level needs $\sum_{i=1}^m O(|N_i|) = O(n)$.
- Expected size of N_L (or N_R) = $\frac{n}{2}$, expected depth of recursion = O(logn)
- $O(n \log n)$ expected time

Sorting - Geometric Structure

An Ordered Sequence = A Partition of Real Line R

• Sorting Problem:

Find the partition H(N) of R formed by the given set N of n points.

• Search Problem:

Associate a search structure $\widetilde{H}(N)$ with H(N) so that, given any point $q \in R$, one can locate the interval in H(N) containing qquickly, e.g., in logarithmic time.

1.1 Randomized Incremental Version of Quick Sort

 S_1, S_2, \dots, S_n : a **random sequence** of N $N^0 = \emptyset$ $N^i = \{S_1, S_2, \dots, S_i\}$ $H(N^0)$ is R $H(N^i)$ is the partition of R by N^i

Randomized Incremental Construction: $H(N^0), H(N^1), H(N^2), \ldots, H(N^n) = H(N).$

Fig 3. Addition of the third point S^3

Conflict List:

For each interval I in $H(N^i)$, conflict list L(I) is an unsorted list of points in $N \setminus N^i$ contained by I, and l(I) is the size of L(I)E.g., in Fig. 2, L(I) has four points.

Fact

Each point in $N \setminus N^i$ is related to a unique interval in $H(N^i)$.

There is a unique edge between a point in $N \setminus N^i$ and its conflicted interval in $H(N^i)$.

Adding a point $S = S^{i+1}$ into N^i

- 1. Find a interval I in $H(N^i)$ which contains S.
- 2. Separate I by S into I_L and I_R .
- 3. Compute $L(I_L)$ and $L(I_R)$ by L(I)

Adding S takes $O(l(I_L) + l(I_R) + 1)$

- 1. Finding I takes O(1) due to the unique edge between S and I in the conflict list.
- 2. Separtating I takes O(1) time
- 3. Computing $L(I_L)$ and $L(I_R)$ takes $O(l(L)) = O(l(I_L) + l(I_R) + 1)$ time.

Backward Time Analysis

Inserting S^{i+1} into $H(N^i)$ = Deleting S^{i+1} from $H(N^{i+1})$

Each point S in N^{i+1} is equally likely to be S^{i+1} .

 $I_L(S)$: Interval left to S

 $I_R(S)$: Interval right to S

Expected Time of Adding S:

$$\frac{1}{i+1} \sum_{S \in N^{i+1}} O(l(I_L(S)) + l(I_R(S)) + 1)$$

$$\leq \frac{2}{i+1} \sum_{J \in H(N^{i+1})} O(I(J) + 1)$$
Each interval are adjacent to at most two p

Each interval are adjacent to at most two points

$$= O(\frac{n}{i+1})$$

Expected Time Complexity of Randomized Incremental Version:

$$\sum_{i=1}^{n} O(\frac{n}{i+1}) = O(n \log n)$$

1.2 Randomized Binary Tree

$$N = \{ 23, 11, 37, 47, 29, 3, 7, 19 \}$$

$$S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8$$

Divide-and-Conquer Quick-Sort

Random Binary Tree $\widetilde{H}(N)$ is defined as follows:

- If $N = \emptyset$, $\widetilde{H}(N)$ is a node corresponding to the whole real line R
- otherwise,
 - the root of $\widetilde{H}(N)$ is a randomly chosen point $S \in N$
 - $-\widetilde{H}(N_L)$ and $\widetilde{H}(N_R)$ are defined recursively for the havles of R on the two sides of S, where N_L and N_R are the sets of points in $N \setminus S$ left to and right to S, respectively.

Search Problem:

Given a point $q \in R$, we locate the invertval in H(N) containing q by applying a binary search on $\widetilde{H}(N)$.

Expected search time = expected depth of $\widetilde{H}(N) = O(\log n)$

1.3 History (On-Line)

Randomized Incremental Version of Quick-Sort through the Random Binary Tree

• Locating the interval using the binary tree

 S_1, S_2, \ldots, S_n is a random sequence of N

(23, 11, 37, 47, 29, 3, 7, 19)

Property: If S_j is the left child of S_i , S_j must belong to the left Interval of S_i in $H(N^i)$.

Cost of Inserting S_j = Searching which interval S_j is located in

= Length of Search Path

Backward Analysis

For a query pint q, the search cost is analyzed as follows:

- If the search tests S_i , q must belong to the left or right interval of S_i in $H(N^i)$ \rightarrow probability of testing S_i is 2/i
- Expected length of search path is $\sum_{i=1}^{n} 2/i = O(\log n)$
- Similarly, inserting S_i takes $O(\log i)$ time

Total Time of Constructing $\tilde{H}(N)$:

$$\sum_{i=1}^n O(\log i) = O(n \log n)$$

This randomized incremental construction through a random binary tree does not require conflict lists:

An on-line algorithm

history(i)

- $\bullet \ \widetilde{H}(N^i)$
- Auxiliary Information
 - Each internal node of $\widetilde{H}(N^i)$ records the left and right intervals when it was created.
 - Each interval records the creation and the deletion time (if it is dead).

history(i)

- Contains the entire history of construction, $\widetilde{H}(N^0), \widetilde{H}(N^1), \ldots, \widetilde{H}(N^n)$.
- Allow searching in $\widetilde{H}(N^i)$ by the auxiliary information.