Chih-Hung Liu
Taiwan
B. S., Computer Science, National Taiwan University

Ph. D, Electronics Engineering, National Taiwan University
chliu@uni-bonn.de

Discrete and Computational Geometry

What is discrete geometry?

- Discrete sets: points, lines, circles in R^{d}
- Structural Properties
I. n lines in the plane

Q: How many regions?
II. n points in the plane

Q: How many of them have the same distance?

Jiři Matoušek, Lecutes on Discrete Geometry

What is computational geometry?

Algorithms for solving geometry problems

Example Convex hulls

Time: $O(n \log n)$

Dynamic Convex hull, 3D convex hull, and convex polytope.

Ketan Mulmuley, Computational Geometry: An

 Introduction Through Randomized AlgorithmsRandomized Incremental Algorithms for Geometry Structure

- Quick Sort and Search
- Vertical Trapezoidal Decomposition
- General Theoretical Foundations
- Dynamic Setting (optionl)

A probability space has three components:

1. a sampe space Ω, which is the set of all possible outcomes of the random process modeled by the probability space;
2. a family \mathcal{F} representing the allowable events, where each set in \mathcal{F} is a subset of the sample space; and
3. a probability function $\operatorname{Pr}: \mathcal{F} \rightarrow R$ satisfying the following:

- for any event $E, 0 \leq \operatorname{Pr}(E) \leq 1$
- $\operatorname{Pr}(\Omega)=1$; and
- for any finite or countably infinite sequence of pairwise mutually disjoint events $E_{1}, E_{2}, E_{3}, \ldots$,

$$
\operatorname{Pr}\left(\bigcup_{i \geq 1}\right)=\sum_{i \leq q} \operatorname{Pr}\left(E_{i}\right)
$$

Example 1:
One dice

- $\Omega\{1,2,3,4,5,6$,
- $\mathcal{F}=\{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\}$, $\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\}$, $\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,3,4\},\{1,3,5\},\{1,3,6\}$, $\{1,4,5\},\{1,4,6\},\{1,5,6\},\{2,3,4\},\{2,3,5\},\{2,3,6\},\{2,4,5\}$, $\{2,4,6\},\{2,5,6\},\{3,4,5\},\{3,4,6\},\{3,5,6\},\{4,5,6\},\{1,2,3,4\}$, $\{1,2,3,5\},\{1,2,3,6\},\{1,2,4,5\},\{1,2,4,6\},\{1,2,5,6\},\{1,3,4,5\}$, $\{1,3,4,6\},\{1,3,5,6\},\{1,4,5,6\},\{2,3,4,5\},\{2,3,4,6\},\{2,3,5,6\}$, $\{2,4,5,6\},\{3,4,5,6\},\{1,2,3,4,5\},\{1,2,3,4,6\},\{1,2,3,5,6\}$, $\{1,2,4,5,6\},\{1,3,4,5,6\},\{2,3,4,5,6\},\{1,2,3,4,5,6\}\}$.
$|\mathcal{F}|=36$
- $\operatorname{Pr}(\{1\})=\frac{1}{6}, \operatorname{Pr}(\{1,4,5\})=\frac{1}{2}, \ldots$

Example 2:
Two identical dices

- $\Omega=\{\{1,1\},\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,2\},\{2,3\},\{2,4\}$, $\{2,5\},\{2,6\},\{3,3\},\{3,4\},\{3,5\},\{3,6\},\{4,4\},\{4,5\},\{4,6\}$, $\{5,5\},\{5,6\},\{6,6\}\} .(|\Omega|=21)$
- $|\mathcal{F}|=2^{21}$
- $\operatorname{Pr}(\{1,1\})=\frac{1}{36}, \operatorname{Pr}(\{1,4\})=\frac{1}{18}, \operatorname{Pr}(\{\{1,1\},\{1,4\}\})=\frac{1}{12}$, $\operatorname{Pr}(\{\{1,3\},\{1,4\}\})=\frac{1}{9}, \ldots$

A random variable X on a sample space Ω is a real-valued function on Ω, i.e., $X: \Omega \rightarrow R$. A discrete random variable is a random variable that takes on only a finite or countably infinite number of values.

Example 3
Sum of two different dices.

- Let X be the randm variable representing the sum of the two dices.
- $\operatorname{Pr}(X=4)=\operatorname{Pr}(\{(1,3),(2,2),(3,1)\})=\frac{1}{12}$

The expectation of a discrete random variable X, denoted by $E[X]$, is given by

$$
E[X]=\sum_{i} i \operatorname{Pr}(X=i),
$$

where the summation is over all values in the range of X.
Example 3
X is the randm variable representing the sume of the two dices.

$$
\begin{gathered}
E[X]=\sum_{2 \leq i \leq 12} i \operatorname{Pr}(X=i) \\
=2 \times \frac{1}{36}+3 \times \frac{1}{18}+4 \times \frac{1}{12}+5 \times \frac{1}{9}+6 \times \frac{5}{36}+7 \times \frac{1}{6}+8 \times \frac{5}{36}+9 \times \frac{1}{9} \\
+10 \times \frac{1}{12}+11 \times \frac{1}{18}+12 \times \frac{1}{36}=7
\end{gathered}
$$

[Linearity of Expectations]:

For n any finite collection of discrete random variable $X_{1}, X_{2}, \ldots, X_{n}$ with finite expectations,

$$
E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right] .
$$

Example 4
X is the randm variable representing the sum of the two dices.

- Let X_{i} be the value of the $i^{\text {th }}$ dice. Then $X=X_{1}+X_{2}$.
- $E\left[X_{i}\right]=\sum_{1 \leq i \leq 6} i \times \frac{1}{6}=3.5$
- $E[X]=E\left[X_{1}+X_{2}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]=7$

1. Quick Sort And Search

Input: a set N of n real numbers (distinct)
Output: an ordered sequence of N

Qucik-Sort(N)

1. If $|N|=1$, return N.
2. Select a number p from N
3. Let N_{L} be $\{l \mid l \in N$ and $l<p\}$

Let N_{R} be $\{r \mid r \in N$ and $r>p\}$
4. If $\left|N_{L}\right|>0, L=$ Quick-Sort $\left(N_{L}\right)$; else $L=\emptyset$
5. If $\left|N_{R}\right|>0, L=$ Quick-Sort $\left(N_{R}\right)$; else $R=\emptyset$
6. return a seqeuence L, p, R

$$
\begin{array}{r}
23,11,37,47,29,3,7,19 \\
\hline 3,7,11,19 \\
\mathbf{2 3} 29,37,47 \\
\hline
\end{array}
$$

3, 7
19
29
47

7

Expected Time Complexity

- If a subset has k elements, it takes $O(k)$ comparisons.
- If a level has m subsets, $N_{1}, N_{2}, \ldots, N_{m}$, since they are distinct, a level needs $\sum_{i=1}^{m} O\left(\left|N_{i}\right|\right)=O(n)$.
- Expected size of $N_{L}\left(\right.$ or $\left.N_{R}\right)=\frac{n}{2}$, expected depth of recursion $=O(\log n)$
- $O(n \log n)$ expected time

Sorting

An Ordered Seqeuence $=$ A Partition of Real Line R

- Sorting Problem:

Find the partition $\boldsymbol{H}(\boldsymbol{N})$ of R formed by the given set N of n points.

- Search Problem:

Associate a search structure $\widetilde{H}(N)$ with $H(N)$ so that, given any point $q \in R$, one can locate the interval in $H(N)$ containing q quickly, e.g., in logarithmic time.

1.1 Randomized Incremental Version of Quick Sort

 $S_{1}, S_{2}, \ldots, S_{n}: \quad$ a random seqeuence of $N$$$
N^{0}=\emptyset \quad N^{i}=\left\{S_{1}, S_{2}, \ldots, S_{i}\right\}
$$

$H\left(N^{0}\right)$ is R
$H\left(N^{i}\right)$ is the partition of R by N^{i}

> Randomized Incremental Construction: $H\left(N^{0}\right), H\left(N^{1}\right), H\left(N^{2}\right), \ldots \ldots, H\left(N^{n}\right)=H(N)$.

Fig 2. $H\left(N^{2}\right) \quad \bullet$ points in $N^{2} \quad \circ$ points in $N \backslash N^{2}$

Fig 3. Addition of the third point S^{3}

Conflict List:

For each interval I in $H\left(N^{i}\right)$, conflict list $\boldsymbol{L}(\boldsymbol{I})$ is
an unsorted list of points in $N \backslash N^{i}$ contained by I,
and $l(I)$ is the size of $L(I)$
E.g., in Fig. 2, $L(I)$ has four points.

Fact

Each point in $N \backslash N^{i}$ is related to a unique interval in $H\left(N^{i}\right)$.
There is a unique edge between a point in $N \backslash N^{i}$ and its conflicted interval in $H\left(N^{i}\right)$.

Adding a point $S=S^{i+1}$ into N^{i}

1. Find a interval I in $H\left(N^{i}\right)$ which contains S.
2. Separate I by S into I_{L} and I_{R}.
3. Compute $L\left(I_{L}\right)$ and $L\left(I_{R}\right)$ by $L(I)$

Adding S takes $\boldsymbol{O}\left(\boldsymbol{l}\left(\boldsymbol{I}_{\boldsymbol{L}}\right)+\boldsymbol{l}\left(\boldsymbol{I}_{\boldsymbol{R}}\right)+\mathbf{1}\right)$

1. Finding I takes $O(1)$ due to the unique edge between S and I in the conflict list.
2. Separtating I takes $O(1)$ time
3. Computing $L\left(I_{L}\right)$ and $L\left(I_{R}\right)$ takes $O(l(L))=O\left(l\left(I_{L}\right)+l\left(I_{R}\right)+1\right)$ time.

Backward Time Analysis

Inserting S^{i+1} into $H\left(N^{i}\right)=$ Deleting S^{i+1} from $H\left(N^{i+1}\right)$
Each point S in N^{i+1} is equally likely to be S^{i+1}.
$I_{L}(S)$: Interval left to S
$I_{R}(S)$: Interval right to S
Expected Time of Adding S :

$$
\begin{aligned}
& \frac{1}{i+1} \sum_{S \in N^{i+1}} O\left(l\left(I_{L}(S)\right)+l\left(I_{R}(S)\right)+1\right) \\
& \leq \quad \frac{2}{i+1} \sum_{J \in H\left(N^{i+1}\right)} O(I(J)+1) \\
& \quad \quad \text { Each interval are adjacent to at most two points } \\
& =\quad O\left(\frac{n}{i+1}\right)
\end{aligned}
$$

Expected Time Complexity of Randomized Incremental Version:

$$
\sum_{i=1}^{n} O\left(\frac{n}{i+1}\right)=O(n \log n)
$$

1.2 Randomized Binary Tree

$$
\begin{gathered}
N=\left\{\begin{array}{c}
23,11,37,47,29,3,7,19 \\
\\
S_{1} S_{2} S_{3} S_{4} S_{5} S_{6} S_{7} S_{8}
\end{array}, ~=~\right.
\end{gathered}
$$

Divide-and-Conquer Quick-Sort

Random Binary Tree $\widetilde{H}(N)$ is defined as follows:

- If $N=\emptyset, \widetilde{H}(N)$ is a node corresponding to the whole real line R
- otherwise,
- the root of $\widetilde{H}(N)$ is a randomly chosen point $S \in N$
- $\widetilde{H}\left(N_{L}\right)$ and $\widetilde{H}\left(N_{R}\right)$ are defined recursively for the havles of R on the two sides of S, where N_{L} and N_{R} are the sets of points in $N \backslash S$ left to and right to S, respectively.

Search Problem:
Given a point $q \in R$, we locate the invertval in $H(N)$ containing q by applying a binary search on $\widetilde{H}(N)$.

Expected search time $=$ expected depth of $\widetilde{H}(N)=O(\log n)$

1.3 History (On-Line)

Randomized Incremental Version of Quick-Sort through the Random Binary Tree

- Locating the interval using the binary tree
$S_{1}, S_{2}, \ldots, S_{n}$ is a random seqeuence of N
(23, 11, 37, 47, 29, 3, 7, 19)

Property: If S_{j} is the left child of S_{i}, S_{j} must belong to the left Interval of S_{i} in $H\left(N^{i}\right)$.
Cost of Inserting $S_{j}=$ Searching which interval S_{j} is located in
$=$ Length of Search Path

Backward Analysis

For a query pint q, the search cost is analyzed as follows:

- If the search tests S_{i}, q must belong to the left or right interval of S_{i} in $H\left(N^{i}\right)$ \rightarrow probability of testing S_{i} is $2 / i$
- Expected length of search path is $\sum_{i=1}^{n} 2 / i=O(\log n)$
- Similarly, inserting S_{i} takes $O(\log i)$ time

Total Time of Constructing $\widetilde{H}(N)$:

$$
\sum_{i=1}^{n} O(\log i)=O(n \log n)
$$

This randomized incremental construction through a random binary tree does not require conflict lists:

An on-line algorithm

history (i)

- $\widetilde{H}\left(N^{i}\right)$
- Auxiliary Information
- Each internal node of $\widetilde{H}\left(N^{i}\right)$ records the left and right intervals when it was created.
- Each interval records the creation and the deletion time (if it is dead).

history (i)

- Contains the entire history of construction, $\widetilde{H}\left(N^{0}\right), \widetilde{H}\left(N^{1}\right), \ldots, \widetilde{H}\left(N^{n}\right)$.
- Allow searching in $\widetilde{H}\left(N^{i}\right)$ by the auxiliary information.

