5. Properties of Abstract Voronoi Diagrams

5.1 Euclidean Voronoi Diagrams

Voronoi Diagram: Given a set S of n point sites in the plane, the Voronoi diagram V(S) of S is a planar subdivision such that

- Each site $p \in S$ is assigned a Voronoi region denoted by $\operatorname{VR}(p, S)$
- All points in $\operatorname{VR}(p, S)$ share the same nearest site p in S

Voronoi Edge: The common boundary between two adjacent Voronoi regions, $\mathrm{VR}(p,S)$ and $\mathrm{VR}(q,S),$ i.e., $\mathrm{VR}(p,S)\cap\mathrm{VR}(q,S)$, is called a Voronoi edge.

Voronoi Vertex: The common vertex among more than two Voronoi regions is called a *Voronoi vertex*.

The Euclidean Voronoi diagram can be computed in $O(n\log n)$ time

• Voronoi Diagram in the L_1 metric

- For two sites $p, q \in S$, the bisector J(p, q) between p and q is defined as $\{x \in R^2 \mid d(x, p) = d(x, q)\}$
- J(p,q) partitions the plane into two half-planes $-D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}$ $-D(q,p) = \{x \in R^2 \mid d(x,q) < d(x,p)\}$
- $\operatorname{VR}(p, S) = \bigcap_{q \in S \setminus \{p\}} D(p, q)$
- $V(p, S) = R^2 \setminus \bigcup_{p \in S} \operatorname{VR}(p, S)$ - consists of Voronoi edges.
- 5.3 Abstract Voronoi Diagrams

A unifying approach to computing Voronoi diagrams among different geometric sites under different distance measures.

A bisecting system $\mathcal{J} = \{J(p,q) \mid p,q \in S\}$ for a set S of sites (indices)

A bisecting system \mathcal{J} is **admissible** if \mathcal{J} satisfies the following axioms

- (A1) Each bisecting curve in \mathcal{J} is homeomorphic to a line (not closed)
- (A2) For each non-empty subset S' of S and for each $p \in S'$, VR(p, S') is path-connected.
- (A3) For each non-empty subset $S', R^2 = \bigcup_{p \in S'} \overline{\operatorname{VR}(p, S')}$
- (A4) Any two curves in \mathcal{J} have only finitely many intersection points, and these intersections are transversal.

- (A1) can be written as "Each curve in \mathcal{J} is unbounded. After stereographic projection to the sphere, it can be completed to a closed Jordan curve through the north pole."
- (A4) can be removed through several complicated proofs.

Three possibilities of an admissible system for three sites

Abstract Voronoi Diagrams

- A category of Voronoi diagrams
 - points in any convex distance function
 - Karlsruhe metric
 - Line segments and convex polygons of constant size

5.3 Basic Properties

Lemma 1

Let (S, \mathcal{J}) be a bisecting curve system. The the following assetions are equivalent.

- 1. If p, q, and r are pairwise different sites in S, then $D(p,q) \cap D(q,r) \subseteq D(p,r)$ (Transitivity)
- 2. For each nonempty subset $S' \subseteq S, R^2 = \bigcup_{p \in s'} \overline{\operatorname{VR}(p, S')}$

 $\begin{array}{l} Proof:\\ (2) \rightarrow (1) \end{array}$

- Let z be a point in $D(p,q) \cap D(q,r)$.
- By (2), there must be a site $t \in S' = \{p, q, r\}$ such that $z \in VR(t, S')$.
- If $t = p, z \in VR(p, S') \subseteq D(p, r)$; otherwise
 - $-z \in \operatorname{VR}(q, S') \subseteq D(q, p)$, contradicting $z \in D(p, q)$
 - $-z \in \operatorname{VR}(r, S') \subseteq D(r, q)$, contradicting $z \in D(q, r)$

 $(1) \to (2)$

- By induction on |S'|.
- If |S'| = 2, the assertion is immediate.
- The case where |S'| = 3 follows directly from (1)
- Let z be a point in the plane. By induction hypothesis, to each $p \in S'$, there exists a site $c(p) \neq p$ such that $z \in VR(c(p), S' \setminus \{p\})$
 - **case 1:** There exists $v \neq w$ such that c(v) = c(w). Then $z \in \operatorname{VR}(c(v), S' \setminus \{v\}) \cap \operatorname{VR}(c(v), S' \setminus \{w\})$ $\subset \operatorname{VR}(c(v), S' \setminus \{v\} \cap D(c(v), v) = \operatorname{VR}(c(v), S')$

case 2 The mapping c is injective. Let p, v, w be scuh that $|\{p, c(p), v, w\}| = 4$. Since $c(v) \neq c(w)$, one of them is different p. We assume c(v) is different from p. Since $c(v) \neq c(p)$ we obtain the contradiction:

- $z \in \operatorname{VR}(c(p), S' \setminus \{p\}) \subseteq D(c(p), c(v))$
- $z \in \mathrm{VR}(c(v),S' \setminus \{v\}) \subseteq D(c(v),c(p))$

Theorem

A bisecting curve system (S, \mathcal{J}) is *admissible* if and only if the following conditions are fulfilled.

- 1. $D(p,q) \cap D(q,r) \subseteq D(p,r)$ holds for any three sites p, q, r, in S
- 2. Any two curve J(p,q) and J(p,r) cross at most twice and do not constitude a clockwise cycle in the plane

proof

 \rightarrow

- By Lemma 1, concentrate on the connectedness of Voronoi regions.
- Consider an infinitely large bounded curve Γ which contains all intersections among curves in $\mathcal J$
- For any $p, q, r \in S$, $V(\{p, q, r\})$ encircled by Γ is a planar graph with exacyly 4 faces each of whose vertices is of degree at least 3.
- \bullet By the Euler Formula, the planar graph gas at most 4 vertices
- Since at least two edges of the original diagram tend to infinity, two vertices must be situated in Γ .
- J(p,q) and J(p,r) cross at most twice since each intersection between them is a Voronoi vertex by definition.
- \bullet A simple case analysis shows no clockwise cycle raising from J(p,q) and J(p,r)

disconnected region

- The case analysis shows that for any 3-element subset S' of S, all Voronoi regions in V(S') is connected.
- We prove by induction on m: If $R = \operatorname{VR}(p, \{p, q_1, q_2, \dots, q_m\})$ is connected, then $R \cap D(p, q_{m+1}) = \operatorname{VR}(p, \{p, q_1, q_2, \dots, q_{m+1}\})$ is connected.
- Let J(p,q) be oriented such that D(p,q) is on its left side.
- Assume the contrary that $R \cap D(p, q_{m+1})$ were not connected.
- If $R \cap D(p, q_{m+1})$ is bounded, C be ∂R and $J(p, q_{m+1})$ would form a clockwise cycle.
 - For $\exists i \leq m, J(p,q_i)$ and $J(p,q_{m+1})$ form a clockwise cycle.
 - There exists a contradiction

 \leftarrow

- Otherwise, we intersect R with the inner domain of Γ , and C' be its contour.
 - The same reasoning applies to C' and $J(p, q_{m+1})$

