Voronoi Diagram and Delaunay Triangulation

Chih-Hung Liu

October 21

Voronoi Diagrams and Delaunay Triangulations
Properties and Duality

・ロン・西方・ ・ ヨン・ ヨン・

2

② 3D geometric transformation

• Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision

•

٠

٠

• Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の��

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).
 - 2 For each point $x \in VR(p, S)$, p is its closest site in S.

- Given a set S of n point sites, Voronoi Diagram V(S) is a planar subdivision
 - Each region contains exactly one site p ∈ S and is denoted by VR(p, S).
 - 2 For each point $x \in VR(p, S)$, p is its closest site in S.
- VR(p, S) is the locus of points closer to p than any other site.

• Bisector
$$B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

- Bisector $B(p, q) = \{x \in R^2 \mid d(x, p) = d(x, q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

イロト イポト イヨト イヨト 一臣

0

- Bisector $B(p,q) = \{x \in R^2 \mid d(x,p) = d(x,q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

$$\mathsf{VR}(p,S) = \bigcap_{q \in S, q \neq p} D(p,q).$$

프 🖌 🛪 프 🛌

ъ

۲

- Bisector $B(p,q) = \{x \in R^2 \mid d(x,p) = d(x,q)\}.$
- $D(p,q) = \{x \in R^2 \mid d(x,p) < d(x,q)\}.$
 - Two half-planes D(p,q) and D(q,p) separated by B(p,q).

$$\mathsf{VR}(p, S) = \bigcap_{q \in S, q \neq p} D(p, q).$$

イロト イポト イヨト イヨト 一臣

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)

イロン イボン イヨン イヨン

ъ

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
 - A piece of B(p,q)

・ロト ・聞 と ・ ヨ と ・ ヨ と …

3

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
 - A piece of B(p,q)

- Voronoi Edge
 - Common intersection between two adjacent Voronoi regions VR(p, S) and VR(q, S)
 - A piece of B(p,q)
- Voronoi Vertex
 - Common intersection among more than two Voronoi regions VR(*p*, *S*), VR(*q*, *S*), VR(*r*, *S*), and so on.

ヘロン 人間 とくほ とくほ とう

.

x \circ

• Grow a circle from a point *x* on the plane

・ロト ・聞 ト ・ ヨト ・ ヨト

æ

• Grow a circle from a point *x* on the plane

• Grow a circle from a point x on the plane

• Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

• Grow a circle from a point x on the plane

• Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)

 x_{\circ}

• Grow a circle from a point x on the plane

• Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)

イロト イヨト イヨト イ

≣ ▶

• Grow a circle from a point x on the plane

- Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
- Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)

• Grow a circle from a point x on the plane

- Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
- Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)

イロト イポト イヨト イヨト

• Grow a circle from a point x on the plane

 x_{o}

- Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
- Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)

< □ > < 同 > < 三 > <

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
 - Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)
 - Hit more than two sites p, q, r, ... ∈ S → x is the Voronoi vertex among VR(p, S), VR(q, S), VR(r, S), ...

- Grow a circle from a point x on the plane
 - Hit one site $p \in S \rightarrow x$ belongs to VR(p, S)
 - Hit two sites p, q ∈ S → x belongs to the Voronoi edge between VR(p, S) and VR(q, S)
 - Hit more than two sites p, q, r, ... ∈ S → x is the Voronoi vertex among VR(p, S), VR(q, S), VR(r, S), ...

< ロ > < 同 > < 臣 > < 臣 > -

• Grow circles from $\forall p \in S$ at unit speed

٠

٠

• Grow circles from $\forall p \in S$ at unit speed

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - *x* ∈ *R*² is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - *x* ∈ *R*² is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - *x* ∈ *R*² is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)
 - $x \in \mathbb{R}^2$ is first hit by three circles from p, q, and $r \to x$ is a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
 - $x \in \mathbb{R}^2$ is first hit by a circle from $p \to x$ belongs to VR(p, S)
 - *x* ∈ *R*² is first hit by two circles from *p* and *q* → *x* belongs to a Voronoi edge between VR(*p*, *S*) and VR(*q*, *S*)
 - $x \in \mathbb{R}^2$ is first hit by three circles from p, q, and $r \to x$ is a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)

• VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overrightarrow{cp}$, x belongs to VR(p, S)

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overrightarrow{cp}$, x belongs to VR(p, S)

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overrightarrow{cp}$, x belongs to VR(p, S)
 - \overrightarrow{cp} extends to the infinity.

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overrightarrow{cp}$, x belongs to VR(p, S)
 - \vec{cp} extends to the infinity.
- If S is in convex position, V(S) is a tree.

- VR(*p*, *S*) is unbounded if and only if *p* is a vertex of the convex hull of *S*.
 - Select a point c in the convex hull
 - Shoot a ray \overrightarrow{cp} from c to p
 - For any point $x \in \overrightarrow{cp} \setminus \overrightarrow{cp}$, x belongs to VR(p, S)
 - \vec{cp} extends to the infinity.
- If S is in convex position, V(S) is a tree.
- An unbounded Voronoi edge corresponds to a hull edge.

Voronoi Diagram (Mathematic Definition)

• Voronoi Diagram V(S)

$$V(S) = R^2 \setminus (\bigcup_{p \in S} \mathsf{VR}(p, S)) = \bigcup_{p \in S} \partial \mathsf{VR}(p, S)$$

- ∂VR(p, S) is the boundary of VR(p, S)
 - $\partial VR(\rho, S) \not\subset VR(\rho, S)$
- V(S) is the union of all the Voronoi edges
- Voronoi Edge *e* between VR(p, S) and VR(q, S)

 $e = \partial \mathsf{VR}(p, S) \cap \partial \mathsf{VR}(q, S)$

Voronoi Vertex v among VR(p, S), VR(q, S), and VR(r, S)

 $v = \partial \mathsf{VR}(p, S) \cap \partial \mathsf{VR}(q, S) \cap \partial \mathsf{VR}(r, S)$

Complexity of V(S)

Theorem

V(S) has O(n) edges and vertices. The average number of edges of a Voronoi region is less than 6.

- Add a large curve **F**
 - Γ only passes through unbounded edges of V(S)
 - Cut unbounded pieces outside F
 - One additional face and several edges and vertices.

Complexity of V(S)

Theorem

V(S) has O(n) edges and vertices. The average number of edges of a Voronoi region is less than 6.

- Euler's Polyhedron Formula: v e + f = 1 + c
 - *v*: # of vertices, *e*: # of edges, *f*: # of faces, and *c*: # number of connected components.
- An edge has two endpoints, and a vertex is incident to at least three edges.
 - $3v \leq 2e \rightarrow v \leq 2e/3$
- f = n + 1 and c = 1
 - $v = 1 + c + e f = e + 1 n \le 2e/3 \rightarrow e \le 3n 3$

• $e = v + f - 1 - c = v + n - 1 \ge 3v/2 \rightarrow v \le 2n - 2$

• Average number of edges of a region $\leq (6n - 6)/n < 6$

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Crossing (\overline{pq})

ъ

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Not Maximal (\overline{pq} is allowable)

イロト イヨト イヨト イ

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Triangulation

э

An edge \overline{pq} is called **Delaunay** if there exists a circle passing through *p* and *q* and containing no other point in its interior.

pq is **Delaunay**

An edge \overline{pq} is called **Delaunay** if there exists a circle passing through *p* and *q* and containing no other point in its interior.

 \overline{pq} is **Delaunay**

< ロ > < 同 > < 三 >

An edge \overline{pq} is called **Delaunay** if there exists a circle passing through *p* and *q* and containing no other point in its interior.

 \overline{pq} is \mathbf{NOT} Delaunay

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

▲口▶▲御▶▲臣▶▲臣▶ 臣 のQで

Definition

A **Delaunay Triangulation** is a triangulation whose edges are all Delaunay.

• For each face, there exists a circle passing all its vertices and containing no other point.

No more than two point sites are colinear

No more than two point sites are colinear

• V(S) is connected

No more than two point sites are colinear V(S) is connected

No more than three point sites are cocircular (At most three points are on the same circle)

General Position Assumption

- No more than two point sites are colinear
 V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
 - degree of each Voronoi vertex is exactly 3.

General Position Assumption

- No more than two point sites are colinear
 V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
 - degree of each Voronoi vertex is exactly 3.
 - Each face of the Delaunay triangulation is a triangle.

General Position Assumption

- No more than two point sites are colinear
 V(S) is connected
- No more than three point sites are cocircular (At most three points are on the same circle)
 - degree of each Voronoi vertex is exactly 3.
 - Each face of the Delaunay triangulation is a triangle.
 - There is a unique Delaunay triangulation.

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

• A site $p \leftrightarrow$ a Voronoi region VR(p, S)

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow$ a Voronoi region VR(p, S)
- A Delaunay edge pq ↔ a Voronoi edge between VR(p, S) and VR(q, S)

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow$ a Voronoi region VR(p, S)
- A Delaunay edge pq ↔ a Voronoi edge between VR(p, S) and VR(q, S)
- A Delaunay triangle △pqr ↔ a Voronoi vertex among VR(p, S), VR(q, S) and VR(r, S)

Geometric Transformation from 2D to 3D

- A paraboloid $P = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 = x_3\}$ in 3D
- For a point $x = (x_1, x_2)$ in 2D, $x' = (x_1, x_2, x_1^2 + x_2^2)$ is its lifted image in 3D
 - *x*['] ← vertical projection from *x* to *P*
- For a set *A* of points in 2D, its lifted image $A' = \{x' = (x_1, x_2, x_1^2 + x_2^2) \mid x = (x_1, x_2) \in A\}$

◆□▶▲□▶▲□▶▲□▶ □ のへぐ

Lemma

Let *C* be a circle in the plane. Then C' is a planar curve on the paraboloid *P*

- C is given by $r^2 = (x_1 c_1)^2 + (x_2 c_2)^2$ • $r^2 = x_1^2 + x_2^2 - 2x_1c_1 - 2x_2c_2 + c_1^2 + c_2^2$
- *C*' satisfies $x_1^2 + x_2^2 = x_3$
- Substituting $x_1^2 + x_2^2$ by x_3 , we obtain a plane *E*

$$x_3 - 2x_1c_1 - 2x_2c_2 + c_1^2 + c_2^2 - r^2 = 0$$

• $C' = P \cap E$

Intersection between E and P is a planar curve

- S' on $P \rightarrow S'$ in convex position
- Each point of S' is a vertex of conv(S')
- Lower convex hull *lconv*(S') of S' is the part of *conv*(S') visible from x₃ = −∞

Duality between DT(S) and lconv(S') (1)

Theorem

The Delaunay triangulation DT(S) equals to the vertical projection onto the x_1x_2 -plane of the lower convex hull of S'

- *p*, *q*, *r* ∈ *S*. *C*: circumcircle of *p*, *q*, *r*
- C' lies on a plane E defined by p', q', r'
- a point x inside $C \leftrightarrow$ lifted image x' below E

Duality between DT(S) and lconv(S') (2)

Theorem

The Delaunay triangulation DT(S) equals to the vertical projection onto the x_1x_2 -plane of the lower convex hull of S'

- *p*, *q*, *r* defines a triangle of DT(S)
 ↔ no point of S in C defined by *p*, *q*, *r* ↔ no point of S' below E defined by p', q', r'
 ↔ p', q', r' defines a facet of *lconv*(S')
- Computing a convex hull in 3D takes O(n log n) time

イロト イポト イヨト イヨト

• *V*(*S*) in *O*(*n* log *n*) time
Another Viewpoint of paraboloid

• For each $s = (s_1, s_2) \in S$, a paraboloid

$$P_s = \{(x_1, x_2, x_3) \mid x_3 = (x_1 - s_1)^2 + (x_2 - s_2)^2\}$$

- For each x = (σ₁, σ₂) in x₁x₂ plane, vertical distance from x to P_s is d(x, s)²
- Opaque and of pairwise different colors
- Looking from $x_3 = -\infty$ upward $\rightarrow V(S)$
- Vertical from x upward first hits $P_s \rightarrow x \in VR(p, S)$
- $P_s \cap P_t \to B(s, t)$
- Lower envelope of $\bigcup_{s \in S} P_s \to V(S)$

• $P_s = \{(x_1, x_2, x_3) | x_3 = f((x_1 - s_1)^2 + (x_2 - s_2)^2)\}$

・ロン・(理)・ ・ ヨン・

■ のへで

- f is a strictly increasing function
- Lower envelope of $\bigcup_{s \in S} P_s \to V(S)$

• $P_s = \{(x_1, x_2, x_3) | x_3 = f((x_1 - s_1)^2 + (x_2 - s_2)^2)\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- f is a strictly increasing function
- Lower envelope of $\bigcup_{s \in S} P_s \to V(S)$
- $f(x) = \sqrt{x} = \sqrt{(x_1 s_1)^2 + (x_2 s_2)^2}$

• $P_s = \{(x_1, x_2, x_3) | x_3 = f((x_1 - s_1)^2 + (x_2 - s_2)^2)\}$

- f is a strictly increasing function
- Lower envelope of $\bigcup_{s \in S} P_s \to V(S)$
- $f(x) = \sqrt{x} = \sqrt{(x_1 s_1)^2 + (x_2 s_2)^2}$
 - Cones of slope 45° with apices at sites $s \in S$

イロト イポト イヨト イヨト

• $P_s = \{(x_1, x_2, x_3) | x_3 = f((x_1 - s_1)^2 + (x_2 - s_2)^2)\}$

- f is a strictly increasing function
- Lower envelope of $\bigcup_{s \in S} P_s \to V(S)$
- $f(x) = \sqrt{x} = \sqrt{(x_1 s_1)^2 + (x_2 s_2)^2}$
 - Cones of slope 45° with apices at sites s ∈ S
- Expanding circles C_s from sites $s \in S$ at equal unit speed

イロト イポト イヨト イヨト 一臣

time t = radius r

•
$$r^2 = (x_1 - s_1)^2 + (x_2 - s_2)^2$$

• $x_3 = \sqrt{(x_1 - s_1)^2 + (x_2 - s_2)^2}$ = radius = time

• $P_s = \{(x_1, x_2, x_3) | x_3 = f((x_1 - s_1)^2 + (x_2 - s_2)^2)\}$

- f is a strictly increasing function
- Lower envelope of $\bigcup_{s \in S} P_s \to V(S)$
- $f(x) = \sqrt{x} = \sqrt{(x_1 s_1)^2 + (x_2 s_2)^2}$
 - Cones of slope 45° with apices at sites s ∈ S
- Expanding circles C_s from sites $s \in S$ at equal unit speed
 - time t = radius r

•
$$r^2 = (x_1 - s_1)^2 + (x_2 - s_2)^2$$

- $x_3 = \sqrt{(x_1 s_1)^2 + (x_2 s_2)^2} = \text{radius} = \text{time}$
- x first hit by $C_s \leftrightarrow$ upward vertical projection from x first hit P_s

Thank You!!