Voronoi Diagram and Delaunay Triangulation

Chih-Hung Liu

October 21

Outline

(1) Voronoi Diagrams and Delaunay Triangulations

- Properties and Duality
(2) 3D geometric transformation

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision
(1) Each region contains exactly one site $p \in S$ and is denoted by $\operatorname{VR}(p, S)$.

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision
(1) Each region contains exactly one site $p \in S$ and is denoted by $\operatorname{VR}(p, S)$.

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision
(1) Each region contains exactly one site $p \in S$ and is denoted by $\operatorname{VR}(p, S)$.

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision
(1) Each region contains exactly one site $p \in S$ and is denoted by $\operatorname{VR}(p, S)$.
(2) For each point $x \in \operatorname{VR}(p, S), p$ is its closest site in S.

Voronoi Diagram

- Given a set S of n point sites, Voronoi Diagram $V(S)$ is a planar subdivision
(1) Each region contains exactly one site $p \in S$ and is denoted by $\operatorname{VR}(p, S)$.
(2) For each point $x \in \operatorname{VR}(p, S), p$ is its closest site in S.
- $\operatorname{VR}(p, S)$ is the locus of points closer to p than any other site.

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.
- $\boldsymbol{D}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$.
- Two half-planes $D(p, q)$ and $D(q, p)$ separated by $B(p, q)$.

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.
- $\boldsymbol{D}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$.
- Two half-planes $D(p, q)$ and $D(q, p)$ separated by $B(p, q)$.

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.
- $\boldsymbol{D}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$.
- Two half-planes $D(p, q)$ and $D(q, p)$ separated by $B(p, q)$.

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.
- $\boldsymbol{D}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$.
- Two half-planes $D(p, q)$ and $D(q, p)$ separated by $B(p, q)$.

$$
\operatorname{VR}(p, S)=\bigcap_{q \in S, q \neq p} D(p, q) .
$$

Voronoi Region

- Bisector $\boldsymbol{B}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)=d(x, q)\right\}$.
- $\boldsymbol{D}(\boldsymbol{p}, \boldsymbol{q})=\left\{x \in R^{2} \mid d(x, p)<d(x, q)\right\}$.
- Two half-planes $D(p, q)$ and $D(q, p)$ separated by $B(p, q)$.

$$
\operatorname{VR}(p, S)=\bigcap_{q \in S, q \neq p} D(p, q) .
$$

Voronoi Edge and Vertex

- Voronoi Edge
- Common intersection between two adjacent Voronoi regions $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Voronoi Edge and Vertex

- Voronoi Edge
- Common intersection between two adjacent Voronoi regions $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- A piece of $B(p, q)$

Voronoi Edge and Vertex

- Voronoi Edge
- Common intersection between two adjacent Voronoi regions $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- A piece of $B(p, q)$

Voronoi Edge and Vertex

- Voronoi Edge
- Common intersection between two adjacent Voronoi regions $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- A piece of $B(p, q)$
- Voronoi Vertex
- Common intersection among more than two Voronoi regions $\operatorname{VR}(p, S), \operatorname{VR}(q, S), \operatorname{VR}(r, S)$, and so on.

Growing Circle

- Grow a circle from a point x on the plane

Growing Circle

- Grow a circle from a point x on the plane

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$

Growing Circle

- Grow a circle from a point x on the plane - Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- Hit more than two sites $p, q, r, \ldots \in S \rightarrow x$ is the Voronoi vertex among $\operatorname{VR}(p, S), \operatorname{VR}(q, S), \operatorname{VR}(r, S), \ldots$

Growing Circle

- Grow a circle from a point x on the plane
- Hit one site $p \in S \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- Hit two sites $p, q \in S \rightarrow x$ belongs to the Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- Hit more than two sites $p, q, r, \ldots \in S \rightarrow x$ is the Voronoi vertex among $\operatorname{VR}(p, S), \operatorname{VR}(q, S), \operatorname{VR}(r, S), \ldots$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- $x \in R^{2}$ is first hit by two circles from p and $q \rightarrow x$ belongs to a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- $x \in R^{2}$ is first hit by two circles from p and $q \rightarrow x$ belongs to a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- $x \in R^{2}$ is first hit by two circles from p and $q \rightarrow x$ belongs to a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- $x \in R^{2}$ is first hit by three circles from p, q, and $r \rightarrow x$ is a Voronoi vertex among $\operatorname{VR}(p, S), \operatorname{VR}(q, S)$ and $\operatorname{VR}(r, S)$

Wavefront Model (Growth Model)

- Grow circles from $\forall p \in S$ at unit speed
- $x \in R^{2}$ is first hit by a circle from $p \rightarrow x$ belongs to $\operatorname{VR}(p, S)$
- $x \in R^{2}$ is first hit by two circles from p and $q \rightarrow x$ belongs to a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- $x \in R^{2}$ is first hit by three circles from p, q, and $r \rightarrow x$ is a Voronoi vertex among $\operatorname{VR}(p, S), \operatorname{VR}(q, S)$ and $\operatorname{VR}(r, S)$

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p
- For any point $x \in \overrightarrow{c p} \backslash \overline{c p}, x$ belongs to $\operatorname{VR}(p, S)$

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p
- For any point $x \in \overrightarrow{c p} \backslash \overline{c p}, x$ belongs to $\operatorname{VR}(p, S)$

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p
- For any point $x \in \overrightarrow{C D} \backslash \overline{C p}, x$ belongs to $\operatorname{VR}(p, S)$
- $\overrightarrow{c p}$ extends to the infinity.

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p
- For any point $x \in \overrightarrow{C D} \backslash \overline{C p}, x$ belongs to $\operatorname{VR}(p, S)$
- $\overrightarrow{c p}$ extends to the infinity.
- If S is in convex position, $V(S)$ is a tree.

Unbounded Region

- $\operatorname{VR}(p, S)$ is unbounded if and only if p is a vertex of the convex hull of S.
- Select a point c in the convex hull
- Shoot a ray $\overrightarrow{c p}$ from c to p
- For any point $x \in \overrightarrow{c D} \backslash \overline{c p}, x$ belongs to $\operatorname{VR}(p, S)$
- $\overrightarrow{c p}$ extends to the infinity.
- If S is in convex position, $V(S)$ is a tree.
- An unbounded Voronoi edge corresponds to a hull edge.

Voronoi Diagram (Mathematic Definition)

- Voronoi Diagram $V(S)$

$$
V(S)=R^{2} \backslash\left(\bigcup_{p \in S} \operatorname{VR}(p, S)\right)=\bigcup_{p \in S} \partial \operatorname{VR}(p, S)
$$

- $\partial \mathrm{VR}(p, S)$ is the boundary of $\operatorname{VR}(p, S)$
- $\partial \mathrm{VR}(p, S) \not \subset \mathrm{VR}(p, S)$
- $V(S)$ is the union of all the Voronoi edges
- Voronoi Edge e between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

$$
e=\partial \operatorname{VR}(p, S) \cap \partial \operatorname{VR}(q, S)
$$

- Voronoi Vertex v among $\operatorname{VR}(p, S), \operatorname{VR}(q, S)$, and $\operatorname{VR}(r, S)$

$$
v=\partial \mathrm{VR}(p, S) \cap \partial \mathrm{VR}(q, S) \cap \partial \mathrm{VR}(r, S)
$$

Complexity of $V(S)$

Theorem

$V(S)$ has $O(n)$ edges and vertices．The average number of edges of a Voronoi region is less than 6.

- Add a large curve 「
- 「 only passes through unbounded edges of $V(S)$
- Cut unbounded pieces outside 「
－One additional face and several edges and vertices．

Complexity of $V(S)$

Theorem

$V(S)$ has $O(n)$ edges and vertices. The average number of edges of a Voronoi region is less than 6.

- Euler's Polyhedron Formula: $v-e+f=1+c$
- v: \# of vertices, e: \# of edges, f : \# of faces, and c : \# number of connected components.
- An edge has two endpoints, and a vertex is incident to at least three edges.
- $3 v \leq 2 e \rightarrow v \leq 2 e / 3$
- $f=n+1$ and $c=1$
- $v=1+c+e-f=e+1-n \leq 2 e / 3 \rightarrow e \leq 3 n-3$
- $e=v+f-1-c=v+n-1 \geq 3 v / 2 \rightarrow v \leq 2 n-2$
- Average number of edges of a region $\leq(6 n-6) / n<6$

Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Crossing ($\overline{p q)}$

Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Not Maximal ($\overline{p q}$ is allowable)

Triangulation

Definition

Given a set S of points on the plane, a triangulation is maximal collection of non-crossing line segments among S.

Triangulation

Delaunay Edge

Definition

An edge $\overline{p q}$ is called Delaunay if there exists a circle passing through p and q and containing no other point in its interior.

Delaunay Edge

Definition

An edge $\overline{p q}$ is called Delaunay if there exists a circle passing through p and q and containing no other point in its interior.

$\overline{p q}$ is Delaunay

Delaunay Edge

Definition

An edge $\overline{p q}$ is called Delaunay if there exists a circle passing through p and q and containing no other point in its interior.

Delaunay Triangulation

Definition

A Delaunay Triangulation is a triangulation whose edges are all Delaunay.

Delaunay Triangulation

Definition

A Delaunay Triangulation is a triangulation whose edges are all Delaunay.

Delaunay Triangulation

Definition

A Delaunay Triangulation is a triangulation whose edges are all Delaunay.

Delaunay Triangulation

Definition

A Delaunay Triangulation is a triangulation whose edges are all Delaunay.

- For each face, there exists a circle passing all its vertices and containing no other point.

General Position Assumption

(1) No more than two point sites are colinear

General Position Assumption

(1) No more than two point sites are colinear

- $V(S)$ is connected

General Position Assumption

(1) No more than two point sites are colinear

- $V(S)$ is connected
(2) No more than three point sites are cocircular (At most three points are on the same circle)

General Position Assumption

(1) No more than two point sites are colinear

- $V(S)$ is connected
(2) No more than three point sites are cocircular (At most three points are on the same circle)
- degree of each Voronoi vertex is exactly 3.

General Position Assumption

(1) No more than two point sites are colinear

- $V(S)$ is connected
(2) No more than three point sites are cocircular (At most three points are on the same circle)
- degree of each Voronoi vertex is exactly 3.
- Each face of the Delaunay triangulation is a triangle.

General Position Assumption

(1) No more than two point sites are colinear

- $V(S)$ is connected
(2) No more than three point sites are cocircular (At most three points are on the same circle)
- degree of each Voronoi vertex is exactly 3.
- Each face of the Delaunay triangulation is a triangle.
- There is a unique Delaunay triangulation.

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow a \operatorname{Voronoi}$ region $\operatorname{VR}(p, S)$

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow$ a Voronoi region $\operatorname{VR}(p, S)$
- A Delaunay edge $\overline{p q} \leftrightarrow$ a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$

Duality

Theorem

Under the general position assumption, the Delaunay triangulation is a dual graph of the Voronoi diagram.

- A site $p \leftrightarrow$ a Voronoi region $\operatorname{VR}(p, S)$
- A Delaunay edge $\overline{p q} \leftrightarrow$ a Voronoi edge between $\operatorname{VR}(p, S)$ and $\operatorname{VR}(q, S)$
- A Delaunay triangle $\Delta p q r \leftrightarrow$ a Voronoi vertex among $\operatorname{VR}(p, S), \operatorname{VR}(q, S)$ and $\operatorname{VR}(r, S)$

Geometric Transformation from 2D to 3D

- A paraboloid $P=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}=x_{3}\right\}$ in 3D
- For a point $x=\left(x_{1}, x_{2}\right)$ in $2 \mathrm{D}, x^{\prime}=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)$ is its lifted image in 3D
- $x^{\prime} \leftarrow$ vertical projection from x to P
- For a set A of points in 2D, its lifted image

$$
A^{\prime}=\left\{x^{\prime}=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right) \mid x=\left(x_{1}, x_{2}\right) \in A\right\}
$$

Circle in 2D \leftrightarrow Planar Curve in P

Lemma

Let C be a circle in the plane. Then C^{\prime} is a planar curve on the paraboloid P

- C is given by $r^{2}=\left(x_{1}-c_{1}\right)^{2}+\left(x_{2}-c_{2}\right)^{2}$

$$
\text { - } r^{2}=x_{1}^{2}+x_{2}^{2}-2 x_{1} c_{1}-2 x_{2} c_{2}+c_{1}^{2}+c_{2}^{2}
$$

- C^{\prime} satisfies $x_{1}^{2}+x_{2}^{2}=x_{3}$
- Substituting $x_{1}^{2}+x_{2}^{2}$ by x_{3}, we obtain a plane E

$$
x_{3}-2 x_{1} c_{1}-2 x_{2} c_{2}+c_{1}^{2}+c_{2}^{2}-r^{2}=0
$$

- $C^{\prime}=P \cap E$
- Intersection between E and P is a planar curve

Lower Convex Hull

- S^{\prime} on $P \rightarrow S^{\prime}$ in convex position
- Each point of S^{\prime} is a vertex of $\operatorname{conv}\left(S^{\prime}\right)$
- Lower convex hull $\operatorname{lconv}\left(S^{\prime}\right)$ of S^{\prime} is the part of $\operatorname{conv}\left(S^{\prime}\right)$ visible from $x_{3}=-\infty$

Duality between $\mathrm{DT}(S)$ and $/ \operatorname{conv}\left(S^{\prime}\right)(1)$

Theorem

The Delaunay triangulation $\mathrm{DT}(S)$ equals to the vertical projection onto the $x_{1} x_{2}$-plane of the lower convex hull of S^{\prime}

- $p, q, r \in S$. C : circumcircle of p, q, r
- C^{\prime} lies on a plane E defined by $p^{\prime}, q^{\prime}, r^{\prime}$
- a point x inside $C \leftrightarrow$ lifted image x^{\prime} below E

Duality between $\mathrm{DT}(S)$ and $\operatorname{Iconv}\left(S^{\prime}\right)$ (2)

Theorem

The Delaunay triangulation $\mathrm{DT}(S)$ equals to the vertical projection onto the $x_{1} x_{2}$-plane of the lower convex hull of S^{\prime}

- p, q, r defines a triangle of $\mathrm{DT}(S)$
\leftrightarrow no point of S in C defined by p, q, r
\leftrightarrow no point of S^{\prime} below E defined by $p^{\prime}, q^{\prime}, r^{\prime}$
$\leftrightarrow p^{\prime}, q^{\prime}, r^{\prime}$ defines a facet of $\operatorname{lconv}\left(S^{\prime}\right)$
- Computing a convex hull in 3D takes $O(n \log n)$ time
- $V(S)$ in $O(n \log n)$ time

Another Viewpoint of paraboloid

- For each $s=\left(s_{1}, s_{2}\right) \in S$, a paraboloid

$$
P_{s}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3}=\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}\right\}
$$

- For each $x=\left(\sigma_{1}, \sigma_{2}\right)$ in $x_{1} x_{2}$ plane, vertical distance from x to P_{s} is $d(x, s)^{2}$
- Opaque and of pairwise different colors
- Looking from $x_{3}=-\infty$ upward $\rightarrow V(S)$
- Vertical from x upward first hits $P_{s} \rightarrow x \in \operatorname{VR}(p, S)$
- $P_{s} \cap P_{t} \rightarrow B(s, t)$
- Lower envelope of $\bigcup_{s \in S} P_{s} \rightarrow V(S)$

Wavefront model revisited

- $P_{s}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3}=f\left(\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}\right)\right\}$
- f is a strictly increasing function
- Lower envelope of $\bigcup_{s \in S} P_{s} \rightarrow V(S)$

Wavefront model revisited

- $P_{s}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3}=f\left(\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}\right)\right\}$
- f is a strictly increasing function
- Lower envelope of $\bigcup_{s \in S} P_{s} \rightarrow V(S)$
- $f(x)=\sqrt{x}=\sqrt{\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}}$

Wavefront model revisited

- $P_{s}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3}=f\left(\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}\right)\right\}$
- f is a strictly increasing function
- Lower envelope of $\bigcup_{s \in S} P_{s} \rightarrow V(S)$
- $f(x)=\sqrt{x}=\sqrt{\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}}$
- Cones of slope 45° with apices at sites $s \in S$

Wavefront model revisited

- $P_{s}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3}=f\left(\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}\right)\right\}$
- f is a strictly increasing function
- Lower envelope of $\bigcup_{s \in S} P_{s} \rightarrow V(S)$
- $f(x)=\sqrt{x}=\sqrt{\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}}$
- Cones of slope 45° with apices at sites $s \in S$
- Expanding circles C_{s} from sites $s \in S$ at equal unit speed
- time $t=$ radius r
- $r^{2}=\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}$
- $x_{3}=\sqrt{\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}}=$ radius $=$ time

Wavefront model revisited

- $P_{s}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3}=f\left(\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}\right)\right\}$
- f is a strictly increasing function
- Lower envelope of $\bigcup_{s \in S} P_{s} \rightarrow V(S)$
- $f(x)=\sqrt{x}=\sqrt{\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}}$
- Cones of slope 45° with apices at sites $s \in S$
- Expanding circles C_{s} from sites $s \in S$ at equal unit speed
- time $t=$ radius r
- $r^{2}=\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}$
- $x_{3}=\sqrt{\left(x_{1}-s_{1}\right)^{2}+\left(x_{2}-s_{2}\right)^{2}}=$ radius $=$ time
- x first hit by $C_{s} \leftrightarrow$ upward vertical projection from x first hit P_{s}

Thank You!!

