Recall WSPD

* Build recursively split tree $T(s)$ in $O(n)$ time.

* For each u in $T(s)$, call FindPairs (v, w).

 - if v, w w.s. s, return.
 - else if v has longer bounding box than w, then:
 - FindPairs (v, w), FindPairs (w, v).

\Rightarrow WSPD consisting of w.s. pairs A_i, B_i s.t.

$$S^2 \subseteq \bigcup_{i=1}^{n} A_i \times B_i \cup \bigcup_{i=1}^{n} B_i \times A_i$$

Running time:

* # Calls to FindPairs $\in O(n)$.

Proof: for each node u in $T(s)$:

- Recursion tree (v, w).

- All leaves of these trees \Rightarrow well-separated pairs found (each only once).

* $m \in \Theta(n)$ if dimension d and separation s are fixed.

Main proof idea: show there are only $O(1)$ sets B_i s.t. pair (A_i, B_i) is reported, for each A_i (only $O(n)$ many).

Class: (A_i, B_i) reported $\Rightarrow B_i, B_j$ separated by hyperplane, bounding boxes disjoint.

$(\forall$ nodes v, w in $T(s): s_v \neq s_w$ or $s_w \leq s_v$ or sep.)
Moreover: pair \((A, B_i)\) separate, pair \((\pi(A), B_i)\) not well separated (or vice versa)

\[\Downarrow \text{father} \]

\[A_i \xrightarrow{\pi(A)} B_i \]

\[\Downarrow \]

\[\Rightarrow \text{the boxes of all } B_i \text{ are close to each other} \]

\[\Rightarrow \text{now use packing argument} \]

Theorem WSPD of \(n\) points in \(\mathbb{R}^d\): \(O(n \log n)\) time \(O(n)\) space

Applications

- Closest pair in time \(O(m) \subset O(n)\)

for each \(p \in S\), all \(k\) nearest neighbors: \(O(n \log n + nk)\)

\((V(s)\) can do this only for \(k = 1\))

- Post office: give arbitrary \(q \in \mathbb{R}^d\), report nearest \(p \in S\)

 - Case of dimensionality
 - Only approximate solutions known
 - Report \(p'\) s.t. \(|q - p'| \leq (1 + \epsilon)|q - p|\)
 - Using dynamic structures
main WSPD application: construction of good geometric networks connecting points in S

good: low dilation, \(\Delta(N) = \min_{\text{edges}} \frac{1}{\lambda(N)} \)

few edges

complete graph: dilation 1, optimal

(spanning tree: can be \(\Omega(n) \))

Small miracle: Construct WSPD for \(S \) wrt \(S \times Y : O(|\log n|) \) for each w.s. pair \(A_i, B_i : \)

- Pick \(p_i \in A_i \), \(q_i \in B_i \)
- Add edge \(p_i q_i \)

\(\Rightarrow \quad O(m) \leq O(n) \) edges (by previous Theorem)

dilation \(\leq \frac{n+4}{n-4} \) as \(n \to \infty \) (by induction on rank \(\lambda(1+q) \))

induct. basis

\(p q \) closest pair \(\Rightarrow \quad S_i : A_i = \{ p \} \quad B_i = \{ q \} \)

induct. step

\(\frac{|p|}{|q'|} < \frac{2}{3} \) \(|q'| \)

\(|p| < \left(1 + \frac{4}{3} \right) |q'| \)