Aufgabe 1: Trapezoidal Decomposition Procedure (4 Points)

Apply the procedure to create a trapezoidal decomposition described in the lecture. Given the following point set \(S \) in \(\mathbb{R}^2 \):

\[
S = \{(-4, -4), (0, -3), (0, 3), (3, -6), (6, 1)\}
\]

a) Create (per Hand) the euclidean Voronoi Diagram \(V(S) \) of \(S \).

b) Create (per Hand) the trapezoidal decomposition \(T(V(S)) \), such that you can locate a query point \(p \) from \([-10, 10] \times [-10, 10]\) in the voronoi regions.

c) Create a DAG \(D(V(S)) \) for \(T(V(S)) \) as a data structure for point localisation using the incremental procedure from the lecture. Add the line segments of the Voronoi Diagram from the left to the right (ordered by the x-coordinate of their left endpoint, breaking ties by x-coordinate of the right endpoint).

d) Mark the query path for the following 3 queries in \(D(V(S)) \):
 \(p_1 = (1, 1), p_2 = (9, -8), p_3 = (-1, 0) \).
 Which voronoi regions do you get as a result?

Aufgabe 2: Trapezoidal Decomposition Properties (4 Points)

Prove the following propositions:

a) Every face \(f \) of a trapezoidal decomposition \(T(S) \) of a set \(S \) of \(n \) line segments in general position\(^1\) is bordered by one or two vertical edges and exactly two non-vertical edges.
 Tip: First prove that every \(f \) is convex.

b) The trapezoidal decomposition \(T(S) \) of a set \(S \) of \(n \) line segments in general position\(^1\) consists of at most \(6n + 4 \) vertices and at most \(3n + 1 \) trapezoids.

\(^1\)The line segments are in general position, if they intersect only at endpoints and no two different endpoints (from the same or different line segments) have the same x-coordinate.
Aufgabe 3: Log* (4 Points)

Consider \(\log^* n := \min \left\{ m \in \mathbb{N}_0 \mid \log_2^{(m)}(n) \leq 1 \right\} \)

where the \(m \)-fold application of \(\log_2 \) on \(n \) is denoted as \(\log_2^{(m)}(n) \), i.e.

\[
\log_2^{(m)}(n) := \begin{cases}
n & \text{falls } m = 0 \\
\log_2(\log_2^{(m-1)}(n)) & \text{sonst}
\end{cases}
\]

a) Prove that \(\log^* n \) is the smallest number \(m \in \mathbb{N}_0 \), such that the tower from \(m \)-many twos \(\text{tower}(m) := 2(2^{\ldots}) \) has value at least \(n \).

b) What is the smallest number \(n \in \mathbb{N} \) with \(\log^* n = 5 \)?

c) Prove \(\log^* n \in O(\log n)! \)

\(^1\)In the lecture we defined \(\log^* n \) as \(\max \left\{ h \in \mathbb{N}_0 \mid \log_2^{(h)}(n) \geq 1 \right\} \). However both definitions differ only by \(\pm 1 \), which doesn’t matter in applications. This exercises reads much nicer this way.