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Connnected Search vs. non-connected search

Non-connected, other rules!

Differ in a factor of 2

1 Place a team of p guards on a vertex.

2 Move a team of m guards along an edge.

3 Remove a team of r guards from a vertex.
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Connnected Search vs. non-connected search

Dk denote a tree with root r of degree three and three full binary
trees, Bk−1, of depth k − 1 connected to the r .

Lemma 31: For the graph Dk , we conclude cs(Dk) = k + 1.

Consider T1, T2 and T3 at r !

At most k + 1

At least k + 1
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Connnected Search vs. non-connected search

Dk denote a tree with root r of degree three and three full binary
trees, Bk−1, of depth k − 1 connected to the r .

Lemma 32: For D2k−1 we conclude s(D2k−1) ≤ k + 1.

k = 1 is trivial. So assume k > 1
Place one agent at the root r and successively clean the
copies of B2k−2 by k agents
This is shown by induction!
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Connnected Search vs. non-connected search

Corollary 33: There exists a tree T so that cs(T ) ≤ 2s(T )− 2
holds.

T = D2k−1, s(D2k−1) ≤ k + 1, cs(D2k−1) = 2k

cs(T )

s(T )
< 2 for all trees T .
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Geometric firefighting, Simple Polygon

Intruder/Contam. constant speed, exclude fire, fences
First, inside a polygon, single fire source,
Build linear barriers with speed B, build barriers successively

Instance: Simple polygon, fire spreads from s ∈ P with speed 1, m
line segment barriers, bi successively constructed with speed B.
Output: Valid sequence of barriers constructed successively, area
blocked from the fire is maximized.

Elmar Langetepe Theoretical Aspects of Intruder Search



Geometric firefigthing, simple polygon

Theorem 1: Computing an optimal-enclosement-sequence is
NP-hard.

Approximation hard!

Our goal: Polynomial time constant approximation!

ai
2

Ai
Bi

Ci

Di

s

r

Ai+1

ai+1
2

di√

r2 −
(
ai
2

)2
= xi

C ′i
h

h

Elmar Langetepe Theoretical Aspects of Intruder Search



Geometric firefigthing, simple polygon, approximation

General scheduling algorithm, working with profits

0.086-approximation of optimal profit (area).

Non-intersecting barriers, is an application!

Intersection is more difficult!

Framework: Set of jobs b1, b2, . . . , bm

Duration di , starting time si (start before si !)

Algorithm: n steps schedule Jn = (bn1 , bn2 , . . . , bnln )

Size ln, n jobs considered, s ′nk precise starting time

Valid:
∑j

k=1 s
′
nk

+ dnk ≤ snj+1 for j = 1 to ln − 1

Job bi contribute with a profit Ai to overall profit A
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Geometric firefigthing, simple polygon, approximation

Profits might overlap! Ai ∪ Aj 6= ∅
Schedule: Jn = (bn1 , bn2 , . . . , bnln )

bj 6∈ Jn, current profit! Can decrease!

Aj(Jn) := Aj \


 ⋃

bnk∈Jn

Ank
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Approximation scheme: GlobalGreedy

Empty schedule J0, constant µ < 1

Sort remaining jobs bj by
Aj (Jn)
dj

, process largest!

1 bj can be scheduled somewhere in Jn. Insert bj : Jn+1

2 bj cannot be processed, overlaps with jobs in Jn.
Find sequence in Jn that overlaps:
1. Profits of these jobs smaller than µ times Aj(Jn).
2. bj can be scheduled after deletion of the jobs.
Then build Jn+1 with bj .
Deleted jobs will never be processed again.

3 No such sequence exists in Jn. Reject bj !

Color scheme: Green profit/jobs (inserted), grey profit/jobs
(deleted afterwards)
All profits (universe) red in the beginning!
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Approximation scheme: GlobalGreedy Example

b1 = (a, b), b2 = (c, d), b3 = (e, f ), |b1| = 3, |b2| = 0.3,
|b3| = 0.5, speed 2, µ = 0.2

A1 = 1053, A2 = 162.45, A3 = 188.75, dP(s, a) = 1.8

p1 = 702 = 2A1
3 , p2 = 2A2

0.3 = 1083, p3 = 2A3
0.5 = 755
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Approximation scheme: GlobalGreedy Example

p1 = 702 = 2A1
3 , p2 = 2A2

0.3 = 1083, p3 = 2A3
0.5 = 755

J2 = (b2, b3), (0.3 + 0.5 + 3)/2 = 1.9 > dP(s, a)

µ · A1 > A3, (0.3 + d(a, b))/2 < d(s, a), J3 = (b2, b1).
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GlobalGreedy: Green and Grey

Jn(grey) and Jn(green) colored green/grey during the
construction of Jn.

J ′n: All jobs that where inserted, green/grey

Lemma 52: Jm(grey) ≤ µ
1−µJm(green) .

By induction on the jobs processed during GlobalGreedy

Base: Holds for J0

Assume that the lemma holds after n steps for Jn.
Consider step n + 1.
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GlobalGreedy: Green and Grey

Lemma 52: Jm(grey) ≤ µ
1−µJm(green) .

Inductive step: n→ n + 1, consider bj with Aj(Jn)

No job deleted (Rules 1.,3.): Only green can increases!

Jn(grey) = Jn+1(grey) ≤ µ

1− µJn(green) ≤ µ

1− µJn+1(grey) .

Rule 2., some jobs deleted: smaller µ times Aj(Jn)

µ

1− µJn+1(green) ≥ µ

1− µ(Jn(green) + (1− µ)Aj(Jn))

≥ µ

1− µJn(green) + µAj(Jn)

≥ Jn(grey) + µAj(Jn) ≥ Jn+1(grey),
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Relationsship to optimal sequence, Jopt

Green and grey profits/jobs
Jopt: Red profits finally not colored green or grey, colored
blue!
Example: Job b3 will be scheduled, no blue color!
Assign, blue profit to the first job in Jopt, that covers profit!
|Jopt| ≤ Jm(blue) + Jm(green) + Jm(grey) .
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Relationsship to optimal sequence, Jopt

Green, grey, blue profits/jobs are disjoint!

Expresse blue profit in terms of grey and green profit

Payment scheme! Green/grey (J ′m) pay to blue jobs!

bi ∈ J ′m gets unique execution time! Pays to some bj ∈ Jopt!

1 If the execution interval of bj ∈ Jopt is fully included in the
execution interval of bi ∈ J ′m, the job bi pays its green or grey

profit times
dj
di
< 1 to bj .

2 If the execution interval of bj ∈ Jopt overlaps with the
execution interval of bi ∈ J ′m, the job bi pays its green or grey
profit times 1

µ to bj .
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Relationsship to optimal sequence, Jopt

1 If the execution interval of bj ∈ Jopt is fully included in the
execution interval of bi ∈ J ′m, the job bi pays its green or grey

profit times
dj
di
< 1 to bj .

2 If the execution interval of bj ∈ Jopt overlaps with the
execution interval of bi ∈ J ′m, the job bi pays its green or grey
profit times 1

µ to bj .

Lemma 53: Any single green or grey job from J ′m pays in total at
most 1 + 2

µ times its profit to the blue jobs.

Lemma 54: Any single blue job from Jopt achieves at least a
payment in the size of its blue profit from the green and grey jobs.

Jm(blue) ≤
(

1 +
2

µ

)
(Jm(green) + Jm(grey)) .
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Relationsship to optimal sequence, Jopt

Lemmate 53/54:

Jm(blue) ≤
(

1 +
2

µ

)
(Jm(green) + Jm(grey)) .

Lemma 52:
Jm(grey) ≤ µ

1− µJm(green) .

|Jopt| ≤ Jm(blue) + Jm(green) + Jm(grey) (1)

≤
(

2 +
2

µ

)
(Jm(green) + Jm(grey)) (2)

≤ 2(µ+ 1)

µ
(Jm(green) +

µ

1− µJm(green)) (3)

≤ 2(µ+ 1)

µ

1

1− µJm(green) (4)

≤ 2
µ+ 1

µ(1− µ)
Jm(green) ≤ 2

µ+ 1

µ(1− µ)
|Jm| . (5)
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Relationsship to optimal sequence, Jopt

|Jopt| ≤ 2
µ+ 1

µ(1− µ)
|Jm| .

Minimize: f (µ) := 2 µ+1
µ(1−µ)

By µ =
√

2− 1 this gives f (µ) = 6 + 4
√

2 ≈ 11.657

Theorem 55: For the geometric firefighter problem inside a simple
polygon with non-intersecting barriers there is an approximation
algorithms that saves at least 1

6+4
√
2

= 3
2 −
√

2 ≈ 0.086 times the

area of the optimal barrier solution.

Applicable to the barrier construction problem!

Intersections, dependencies between barriers!
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Relationsship to optimal sequence, Jopt

1 If the execution interval of bj ∈ Jopt is fully included in the
execution interval of bi ∈ J ′m, the job bi pays its green or grey

profit times
dj
di
< 1 to bj .

2 If the execution interval of bj ∈ Jopt overlaps with the
execution interval of bi ∈ J ′m, the job bi pays its green or grey
profit times 1

µ to bj .

Lemma 53: Any single green or grey job from J ′m pays in total at
most 1 + 2

µ times its profit to the blue jobs.

Lemma 54: Any single blue job from Jopt achieves at least a
payment in the size of its blue profit from the green and grey jobs.

Jm(blue) ≤
(

1 +
2

µ

)
(Jm(green) + Jm(grey)) .
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Relationsship to optimal sequence, Jopt

1 If the execution interval of bj ∈ Jopt is fully included in the
execution interval of bi ∈ J ′m, the job bi pays its green or grey

profit times
dj
di
< 1 to bj .

2 If the execution interval of bj ∈ Jopt overlaps with the
execution interval of bi ∈ J ′m, the job bi pays its green or grey
profit times 1

µ to bj .

Lemma 53: Any single green or grey job from J ′m pays in total at
most 1 + 2

µ times its profit to the blue jobs.

bi ∈ J ′m has fixed execution interval Ii with start- and endtime

Interval of bj ∈ Jopt fully inside Ii :
dj
di

, sums up to at most 1
for all bj ∈ Jopt

Two intervals bj ∈ Jopt can overlap Ii : 2 times 1
µ the profit

of bi .
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Relationsship to optimal sequence, Jopt

1 If the execution interval of bj ∈ Jopt is fully included in the
execution interval of bi ∈ J ′m, the job bi pays its green or grey

profit times
dj
di
< 1 to bj .

2 If the execution interval of bj ∈ Jopt overlaps with the
execution interval of bi ∈ J ′m, the job bi pays its green or grey
profit times 1

µ to bj .

Lemma 54: Any single blue job from Jopt achieves at least a
payment in the size of its blue profit from the green and grey jobs.

Blue job bj ∈ Jopt, job has to be rejected in step k + 1,
Consider execution time interval of bj ∈ Jopt
Subset Jk of Jk = (bk1 , bk2 , . . . , bklk ) that minimally overlaps
with execution interval for bj
Total profit Jk larger than µ times curr. red profit Aj(Jk) of bj
Larger µ times the final blue part of bj

bj less priority: Ai (Jk )
di
≥ Aj (Jk )

dj
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Relationsship to optimal sequence, Jopt

Lemma 54: Any single blue job from Jopt achieves at least a
payment in the size of its blue profit from the green and grey jobs.

1 Total profit Jk larger than µ times final blue profit of bj
(≤ Aj(Jk))

2 bj less priority: Ai (Jk )
di
≥ Aj (Jk )

dj

|Jk | = 1 for single job, say bi
bj ∈ Jopt might be fully inside the execution time of bi :

Pay: Ai (Jk)
dj
di
≥ Aj(Jk)

di
di

= Aj(Jk)

For |Jk | ≥ 1, execution interval of bj overlaps with all
execution intervals in Jk :

Pay:
1

µ

∑

bi∈Jk

Ai (Jk) ≥ 1

µ
(µAj(Jk)) = Aj(Jk)
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