Theoretical Aspects of Intruder Search Course Wintersemester 2015/16 Cop and Robber Game

Elmar Langetepe
University of Bonn

November 17th, 2015

Cop and Robber Game in a graph

- Graph $G=(V, E)$
- Set the cop on a vertex
- Set the robber on a vertex
- Move alternatingly, try to visit robbers position

Cop and Robber game for graphs:
Instance: A Graph $G=(V, E)$ and the cardinality of the cops C. Question: Is there a winning strategy S for the cops C ?

Active and passive

Active version: Robbers has to move in each step! Makes a difference!

Classification and pitfalls

- Classes G_{R} and G_{C} for winning of cop or robber
- Situation at the end, single cop, G_{C}
- A pitfall for the robber
- Definitions

For a pair $\left(v_{r}, v_{c}\right)$ of vertices we call v_{r} a pitfall and v_{c} its dominating vertex if $N\left(v_{r}\right) \cup\left\{v_{r}\right\} \subseteq N\left(v_{c}\right)$ holds. Obviously, a graph G whithout a pitfall is in G_{R}.

Graph without pitfalls

Graphs without pitfalls cannot have a winning strategy for the cop.

Algorithmis approach

Successively, remove pitfalls is an algorithmic approach!
Lemma 31: Let v_{r} be a pitfall of some graph G. Then

$$
G \in G_{C} \Longleftrightarrow G \backslash\left\{v_{r}\right\} \in G_{C}
$$

Proof:

1. $G \backslash\left\{v_{r}\right\} \in G_{R} \Longrightarrow G \in G_{R}$ (pitfall by cop $=$ dom vertex by cop)
2. $G \backslash\left\{v_{r}\right\} \in G_{C} \Longrightarrow G \in G_{C}$ (pitfall by robber $=$ dom. vertex by robber)

Algorithmis approach

Successively, remove pitfalls is an algorithmic approach!
Theorem 32: The graph G is in G_{C}, if and only if the successive removement of pitfalls finally ends in a single vertex. The classification of a graph can be computed in polynomial time.

Proof:
Lemma 31, remove a pitfall.
Detect a pitfall in polynomial time.
Example!

Arbitrary representatives

Product $G_{1} \times G_{2}$ of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, G_{2}\right)$ Vertex set $V_{1} \times V_{2}$
Edges set: $\left(v_{1}, v_{2}\right)$ and $\left(w_{1}, w_{2}\right)$ of $V_{1} \times V_{2}$ build an edge if:
(1) $v_{1}=w_{1}$ and $\left(v_{2}, w_{2}\right) \in E_{2}$ or
(2) $\left(v_{1}, w_{1}\right) \in E_{1}$ and $v_{2}=w_{2}$ or
(3) $\left(v_{1}, w_{1}\right) \in E_{1}$ and $\left(v_{2}, w_{2}\right) \in E_{2}$.

Example!

Arbitrary representatives, Product

Lemma 33: If $G_{1}, G_{2} \in G_{C}$, then $G_{1} \times G_{2} \in G_{C}$
Proof:
Winning strategy for G_{1} that starts in v_{1}^{s} and catches the robber in v_{1}^{e} and G_{2} that starts in v_{2}^{s} and catches the robber in v_{2}^{e}.
Cop can start in (v_{1}^{s}, v_{2}^{s}) apply the strategies simultaneously and finally catches the robber in a vertex $\left(v_{1}^{e}, v_{2}^{e}\right)$.

Arbitrary representatives, Retraction

- Graph G and subgraph H
- Retraction from G to H
- Mapping $\varphi: V(G) \mapsto V(H)$
- $\varphi(H)=H$ for $(u, v) \in E$ we have $(\varphi(v), \varphi(u)) \in E(H)$
- Graph H is a retract of G, if a retraction from G to H exists.

Note that $G \backslash\left\{v_{r}\right\}$ for a pitfall v_{r} is a retract of $G . \varphi\left(v_{r}\right)=v_{c}$.

Arbitrary representatives, Product

Lemma 34: If $G \in G_{C}$, and graph H is a retract of G, then $H \in G_{C}$.

Proof:

- Assume $H \in G_{R}, \varphi$ mapping of retraction
- Winning strategy for H exists, extend to G
- R remains in H and identifies the moves of C in G as moves in H.
- C moves from v to u in G, the robber indentifies this move as a move from $\varphi(u)$ to $\varphi(w)$ which exists in H by definition of φ
- $G \in G_{R}$

Theorem 35: The class of graphs G in G_{C} is closed under the operations product and retraction.

Number of cops required

- Graph G with 4-cycle, one cop, $G \in G_{R}$
- $c(G)$, minimal number of cops required
- Vertex-Cover: $V_{c} \subseteq V$ so that any vertex $u \in V \backslash V_{c}$ has a neighbor in V_{c}.
- Minimum vertex cover is an upper bound on $c(G)$.
- $c(G)$ can be arbitraily large for some graphs

Number of cops required, negative results!

Theorem 36: Let $G=(V, E)$ be a graph with minimum degree n that contains neither 3 - nor 4 -cycles. We conclude $c(G) \geq n$.

Proof:

- Assume that $n-1$ cops are sufficient
- Assume no vertex cover of size $<n$
- c_{1}, \ldots, c_{n-1} starting positions
- Safe position for the robber, 2 steps away exists
- Next move of the cops
- No cop can threaten (occupy/be adjacent to) two neighbors of the robber, no such cycles
- Still one neigbor is safe!
- Show that no vertex cover of this size exists

Number of cops required, negative results

Theorem 36: Let $G=(V, E)$ be a graph with minimum degree n that contains neither 3 - nor 4 -cycles. We conclude $c(G) \geq n$.

Proof:

- No vertex cover of size $n-1$.
- Vertex set $V=\left\{v_{1}, \ldots, v_{n-1}\right\}$ of G
- $w \neq v_{i}$ for $i=1, \ldots, n-1$ exists
- $N(w)$, of w : k vertices v_{1}, \ldots, v_{k} from V and $l-k$ vertices w_{1}, \ldots, w_{l-k} not in V
- We have $I \geq n, k \leq n-1$ and $I-k \geq 1$
- No 3- and 4-cycles, $N\left(w_{i}\right) \cap N\left(w_{j}\right)$ has to be $\{w\}$ for $i \neq j$
- None of the $N\left(w_{i}\right)$ s can contain a vertex of v_{1}, \ldots, v_{k}, since this would give a 3-cycle with w
- If the set V is a vertex cover for G, any $N\left(w_{i}\right)$ has to contain a different vertex from V.
- We require $I-k$ different vertices from v_{k+1}, \ldots, v_{n-1} and n vertices from V in total, a contradiction.

Number of cops required, negative results

Theorem 37: For every n there exists a graph without 3- or 4-cylces with minimum degree n. So, for any n there is a graph with $c(G) \geq n$.

Proof:
By induction!

- $n=2$ the simple 5-cycle
- 3-colorable and degree $\geq n$. At least n agents
- From n to $n+1$!

Number of cops required, negative results

Theorem 37: For every n there exists a graph without 3- or 4-cylces with minimum degree n. So, for any n there is a graph with $c(G) \geq n$.

Proof: Inductive step! Four copies!

Theorem 38: Consider a graph G with maximum degree 3 and the property that any two adjacent edges are contained in a cycle of lenght at most 5 . Then $c(G) \leq 3$.

Proof:

- Position of the robber
- Build paths P_{1}, P_{2} and P_{3} from c_{1}, c_{2}, c_{3} to adjacent edges
- Always move closer!
- $P_{1}=\left\{c_{1}, \ldots, r_{1}, r\right\}, P_{2}=\left\{c_{2}, \ldots, r_{2}, r\right\}$ and
$P_{3}=\left\{c_{3}, \ldots, r_{3}, r\right\}$
- $I=I_{1}+I_{2}+I_{3}$, decrease!

Theorem 38: Consider a graph G with maximum degree 3 and the property that any two adjacent edges are contained in a cycle of lenght at most 5 . Then $c(G) \leq 3$.

Proof:
(1) R stands still. Cops move toward R and $I^{\prime} \leq I-3$.
(2) The robber R moves to r_{1} w.l.o.g.
r_{1} has degree 1: Cannot happen, because of $\left(r, r_{1}\right)$ and $\left(r, r_{2}\right)$ are adjacent (5 cycle!).
r_{1} has degree 2: Either c_{1} was on r_{1} and we are done or move all three cops toward r which gives

$$
I^{\prime} \leq I_{1}-2+I_{2}+I_{3}=I-2<I .
$$

Theorem 38: Consider a graph G with maximum degree 3 and the property that any two adjacent edges are contained in a cycle of lenght at most 5 . Then $c(G) \leq 3$.
r_{1} has degree 3: Situation as follows! Use the paths

$$
\begin{aligned}
& P_{1}=\left\{c_{1}^{\prime}, \ldots, r_{1}\right\} P_{2}=\left\{c_{2}^{\prime}, \ldots, r_{2}, y, x, r_{1}\right\} \text { and } \\
& P_{3}=\left\{c_{3}^{\prime}, \ldots, r_{3}, r, r_{1}\right\} \text { with length } \\
& I^{\prime} \leq I_{1}-2+I_{2}+1+l_{3}=I-1<I^{\prime} .
\end{aligned}
$$

Number of cops required, positive result

Theorem 40: For any planar graph G we have $c(G) \leq 3$.
Proof:

- Two cops protect some paths, the third cop can proceed!

Number of cops required, positive result

Lemma 39: Consider a graph G and a shortest path
$P=s, v_{1}, v_{2}, \ldots, v_{n}, t$ between two vertices s and t in G, assume that we have two cops. After a finite number of moves the path is protected by the cops so that after a visit of the robber R of a vertex of P the robber will be catched.

- Move cop conto some vertex $c=v_{i}$ of P
- Assuming, $r \neq v_{i}$ closer to some x in $s, v_{1}, \ldots, v_{i-1}$ and some y in $v_{i+1}, \ldots, v_{n}, t$. Contradiction shortest path from x and y
- $d(x, c)+d(y, c) \leq d(x, r)+d(r, y)$
- Move toward x, finally: $d(r, v) \geq d(c, v)$ for all $v \in P$
- Now robot moves, but we can repair all the time
- r goes to some vertex r^{\prime} and we have $d\left(r^{\prime}, v\right) \geq d(r, v)-1 \geq d(c, v)-1$ for all $v \in P$.
- Some $v^{\prime} \in P$ with $d\left(c, v^{\prime}\right)-1=d\left(r^{\prime}, v^{\prime}\right)$ exists, move to v^{\prime}

