# Theoretical Aspects of Intruder Search Course Wintersemester 2015/16 Graphs and Trees 

Elmar Langetepe<br>University of Bonn

October 20th, 2015

## Organisation

- Lecture: Tuesday 16:15 to 17:45
- Exercise groups: Starting 28/29th

Wednesday: 14:15-15:45
Thursday: 10:15-11:45

- Sign in
- Manuscipt on the webpage
- Slides on the webpage
- Exercises
- Today: Introduction


## Repetition: Main problems and intention

- Evader/Intruder versus Searcher/Guard
- Escaping/Intruding versus Catching/Avoidance
- Game, Competition
- Different Scenarios: Environment, Facilities, Goal, Model
- Discrete, Continuous, Geometry, Combinatorics
- Interpretation: Possible Position of the Intruder, Decontamination, Firefighting


## Repetition: Theoretical Aspects

- Algorithmic track
- Computational complexity
- Correctness or Failure
- Efficiency
- Optimality
- Prerequisites: Algorithms, Datastructure, Analysis, Complexity, Computability
- Models, Methods, Proof Techniques, Tools


## Repetition: Different Examples

(1) Optimal-Closing-Sequence against Intruder

- Saving maximum area by closing doors in polygon
- NP-hard, Reduction of Subset-Sum
(2) Catching-an-Evader
- Grid-Graph game, Evader moves, $k$ stationary Guards
- Correctness $k=1$ impossible, $k=2$, optimal solution by ILP
(3) Enclosing-a-Fire
- Expanding circle in the plane, Build a barrier with speed $v>1$
- Barrier Curves: Circle arround origin of fire, $v \geq 2 \pi$ tight
(9) Discrete Fire-Figthing-Curve
- Grid-Graph, Fire spreads after $n$ steps, barrier cell after $b$ steps
- Conjecture, $b<\frac{n-1}{2}$ tight bound! Simulation!


## Chapter 2: Discrete Scenarios

- Graph $G=(V, E)$, degree $d$, root $r, p$ firefigther per step
- Different models: Intruder-Search/Firefigthing
- Complexity
- Optimal Algorithms
- Approximation


## Graph of degree 3

- NP-complete
- Simple Algorithm for root vertex of degree 2
- Defending a vertex
- dist $(u, r)$ length of a shortest path from $r$ to $u$
- $V_{1}$ vertices of degree $1, V_{2}$ vertices of degree 2
- $V_{c}$ vertices of degree 3 that belong to a cycle
- Example


## Graph of degree 3 , root vertex degree 2

## Path Strategy

Lemma 6: Vertex $u \in V_{1} \cup V_{2}$ can be enclosed in time dist $(u, r)+1$ and only dist $(u, r)+1$ vertices are on fire. Vertex $u \in V_{c}$ can be enclosed in time dist $(u, r)+C(u)-1$ and only dist $(u, r)+C(u)-1$ vertices are on fire.

Proof! Constructive!

## Graph of degree 3 , root vertex degree 2

Optimal Strategy:

$$
f(u):=\left\{\begin{array}{lll}
\operatorname{dist}(u, r)+1 & : & \text { if } u \in V_{1} \cup V_{2} \\
\operatorname{dist}(u, r)+C(u)-1 & : & \text { if } u \in V_{c} \backslash V_{2} \\
\infty & : & \text { otherwise }
\end{array}\right.
$$

Find a vertex $u$ with $f(u)=\min _{x \in V} f(x)$. Enclose this vertex by the path strategy.

## Graph of degree 3 , root vertex degree 2

Structural Property
Lemma 7: For a setting $(G, r, 1)$ where $G$ has maximal degree 3 and root $r$ has degree $\leq 2$ there is always an optimal protection strategy that protects the neighbor of a contaminated vertex in each time step.

Proof!

- Trivial for degree $r$ is 1
- Degree of $r$ is 2, mimimal counterexample
- I. one of the neighbors of $r$ first, II. not a neighbor of $r$


## Graph of degree 3 , root vertex degree 2

Optimal Strategy:

$$
f(u):=\left\{\begin{array}{lll}
\operatorname{dist}(u, r)+1 & : & \text { if } u \in V_{1} \cup V_{2} \\
\operatorname{dist}(u, r)+C(u)-1 & : & \text { if } u \in V_{c} \backslash V_{2} \\
\infty & : & \text { otherwise }
\end{array}\right.
$$

Find a vertex $u$ with $f(u)=\min _{x \in V} f(x)$. Enclose this vertex by the path strategy.

Theorem 8: For a problem instance $(G, r, 1)$ of a graph $G$ of maximum degree 3 and a root vertex of degree 2 the above strategy is optimal.

Proof!

## Graph of degree 3 , root vertex degree 2

Theorem 8: For a problem instance $(G, r, 1)$ of a graph $G$ of maximum degree 3 and a root vertex of degree 2 the above strategy is optimal.

Proof:

- Last burning vertex $u$
- $u \in V_{1}, V_{2}$, by construction
- $u \in V_{c}$, neighbors $n_{1}, n_{2}, n_{3}$, and $n_{1}$ on fire
- Also $n_{2}$ on fire: $u, n_{1}$ and $n_{2}$ on a cycle, contradiction!
- $n_{2}$ and $n_{3}$ are protected.
- Another neigbor of $n_{2}$ or $n_{3}$ is on fire, say $p$ of $n_{2}$
- Otherwise: protect $u$ one step earlier
- $u, n_{2}, p$ build the cycle


## Graph of degree 3 , root vertex degree 2

Theorem 9: For a problem instance ( $G, r, 1$ ) of a graph $G=(V, E)$ of maximum degree 3 and a root vertex of degree 2 the decision problem can be solved in polynomial time and the maximum number of vertices that can be saved is $|V|-\min _{x \in V} f(x)$.

Proof: Compute the values in polynomial time!

## NP-Competeness for general graphs

Theorem 10: The firefighter decision problem for graphs is NP-hard.

Proof:

- $k$-Clique reduction to the decision problem
- Construct Graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ from Graph $G=(V, E)$
- Vertex $s_{v}$ for every $v \in V$, Vertex $s_{e}$ for every $e \in E$
- Edges $\left(s_{v}, s_{e}\right)$ and $\left(s_{u}, s_{e}\right)$ for every edge $e=(u, v)$
- Root vertex $r$ and $k-1$ colums of $k$ vertices $v_{i, j}$
- Connect the layer from left to right and to all $s_{v}$
- Example Blackboard!


## NP-Competeness for general graphs

Theorem 10: The firefighter decision problem for graphs is NP-hard.

Proof:
(1) k-Clique exists

- Save $k$ vertices of the $k$ Clique
- Saves $k^{\prime}=k+\left(\frac{k}{2}\right)+1$ vertices
(2) Saving $k^{\prime}=k+\left(\frac{k}{2}\right)+1$ vertices?
- Before step $k$ : Saving $s_{e}$ or $a_{i, j}$ needless, only one
- Saving $k$ vertices $s_{v}$.
- $k^{\prime}$ possible, if $k$-Clique exists
- Another one in the last step


## NP-Competeness for general graphs

Theorem 11: For a problem instance $(T, r, 1)$ of a rooted tree $T=(V, E)$ the greedy strategy gives a $\frac{1}{2}$ approximation for the optimal number of vertices protected. This bound is tight.

Proof:
(1) Example for $\frac{k+1}{2(k-1)} \mapsto \frac{1}{2}$
(2) Tightness

- Greedy versus opt, time steps: Savings
- $\mathrm{opt}_{A}$ not better than greedy, $\mathrm{opt}_{B}$ better than greedy.
- $2 S_{G} \geq$ opt $_{A}+$ opt $_{B}$
- Greedy competes with opt ${ }_{A}$ at the start
- Moment where Greedy is worse that opt
- $\operatorname{opt}_{B}$ choose $v$, depth I, also greedy can choose I or greedy has chosen a predecessor of $v$ before $\Rightarrow$ greedy saves at least the vertices of $\mathrm{opt}_{B}$ before


## Efficient Algorithm for Trees

Firefighter Decision Problem (Protection by $k$ guards):
Instance: A Graph $G=(V, E)$ of degree $d$ with root vertex $r$ and $p$ firefigther per step and an integer $k$.
Question: What is the strategy that saves a maximum number of vertices by protecting $k$ vertices in total?

## Efficient Algorithm for Trees

Dynamic Programming Approach: Place k guards! Structural Property!

Lemma 12: For any optimal strategy for an instance of the firefigther decision problems on trees (protection by $k$ guards, saving $k$ vertices) the vertex defended at each time is adjacent to a burning vertex. There is an integer $l$, so that all protected vertices have depth at most $l$, exactly one vertex $p_{i}$ at each depth is protected and all ancestors of $p_{i}$ are burning.

- Time step $t$, place guard with non-burning neighbor
- Placement closer to the root improves strategy
- depth $t$ at step $t$, inductively!


## Efficient Algorithm for Trees

Dynamic Programming Approach: Place $k$ guards!

- Lemma 12: Guards in depth $1,2, \ldots, k$
- $L_{k}$, vertices of $T$ with depth $\leq k$
- Order for the processing: Subproblems!
- Preorder of the graph! to the left, rightmost
- I(v), vertex to the left of $v$
- $T_{v}$ subtree at $v$
- $T^{v}$ tree with vertices from $L_{k}$ to the left of $v$, including $v$
- Recursion more general: Vector $X \in\{1,0\}^{k}$
- $X(j)=1$ place guard in step $j, X(j)=0 \mathrm{n}$ guard in step $j$
- $A_{v}(X)$ : Optimal strategy for $X$ in $T^{v}$, based on $T^{l(v)}$
- Recursion!


## Efficient Algorithm for Trees

Problem! No two guards on a single path! Set guard after depth i!


## Efficient Algorithm for Trees

$$
A_{v}(X, i):=
$$

Optimal protection number in $T^{\vee}$ for strategy that sets the guards w.r.t. entries of $X$ and no guard is set on the path from $r$ to $v$ at depth $\leq i$

## Efficient Algorithm for Trees

Theorem 13: Computing the optimal protection strategy for $k$ guards on a tree $T$ of size $n$ can be done in $O\left(n 2^{k} k\right)$ time.

$$
\begin{aligned}
& A_{v}(X, i):= \\
& \max \left\{\begin{array}{l}
A_{l(v)}(X, \min (\mathrm{~d}(v)-1, i)) \\
{[X(\mathrm{~d}(v))=1 \& \mathrm{~d}(v)>i] \cdot\left(\left|T_{v}\right|+A_{l(v)}\left(X^{v}, \mathrm{~d}(v)-1\right)\right)}
\end{array}\right\}
\end{aligned}
$$

- Compute $L_{k}, I(v),\left|T^{v}\right|$ in linear time!
- Traverse the vertices of $L_{k}$ from left to right
- At most $n \times 2^{k} \times k$ entries $A_{v}(X, i)$
- $n$ stands for $v, 2^{k}$ stands for $X, k$ stands for $i$.

Corollary 14: Computing a strategy for a tree $T$ of size $n$ that saves at least $k$ vertices can be done in $O\left(n 2^{k} k\right)$ time.

- Run above algorithm for $i=1, \ldots, k$
- Sufficient!
- $\sum_{i=1}^{k} i 2^{i} n \leq k n \sum_{i=1}^{k} 2^{i}=\left(2^{k+1}-2\right) k n$

