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Organisation

Lecture: Tuesday 16:15 to 17:45

Exercise groups: Starting 28/29th
Wednesday: 14:15-15:45
Thursday: 10:15-11:45

Sign in

Manuscipt on the webpage

Slides on the webpage

Exercises

Today: Introduction
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Repetition: Main problems and intention

Evader/Intruder versus Searcher/Guard

Escaping/Intruding versus Catching/Avoidance

Game, Competition

Different Scenarios: Environment, Facilities, Goal, Model

Discrete, Continuous, Geometry, Combinatorics

Interpretation: Possible Position of the Intruder,
Decontamination, Firefighting
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Repetition: Theoretical Aspects

Algorithmic track

Computational complexity

Correctness or Failure

Efficiency

Optimality

Prerequisites: Algorithms, Datastructure, Analysis,
Complexity, Computability

Models, Methods, Proof Techniques, Tools
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Repetition: Different Examples

1 Optimal-Closing-Sequence against Intruder

Saving maximum area by closing doors in polygon
NP-hard, Reduction of Subset-Sum

2 Catching-an-Evader

Grid-Graph game, Evader moves, k stationary Guards
Correctness k = 1 impossible, k = 2, optimal solution by ILP

3 Enclosing-a-Fire

Expanding circle in the plane, Build a barrier with speed v > 1
Barrier Curves: Circle arround origin of fire, v ≥ 2π tight

4 Discrete Fire-Figthing-Curve

Grid-Graph, Fire spreads after n steps, barrier cell after b steps
Conjecture, b < n−1

2 tight bound! Simulation!
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Chapter 2: Discrete Scenarios

Graph G = (V ,E ), degree d , root r , p firefigther per step

Different models: Intruder-Search/Firefigthing

Complexity

Optimal Algorithms

Approximation
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Graph of degree 3

NP-complete

Simple Algorithm for root vertex of degree 2

Defending a vertex

dist(u, r) length of a shortest path from r to u

V1 vertices of degree 1, V2 vertices of degree 2

Vc vertices of degree 3 that belong to a cycle

Example
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Graph of degree 3, root vertex degree 2

Path Strategy

Lemma 6: Vertex u ∈ V1 ∪ V2 can be enclosed in time
dist(u, r) + 1 and only dist(u, r) + 1 vertices are on fire. Vertex
u ∈ Vc can be enclosed in time dist(u, r) + C (u)− 1 and only
dist(u, r) + C (u)− 1 vertices are on fire.

Proof! Constructive!
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Graph of degree 3, root vertex degree 2

Optimal Strategy:

f (u) :=


dist(u, r) + 1 : if u ∈ V1 ∪ V2

dist(u, r) + C (u)− 1 : if u ∈ Vc \ V2

∞ : otherwise

Find a vertex u with f (u) = minx∈V f (x). Enclose this vertex by
the path strategy.
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Graph of degree 3, root vertex degree 2

Structural Property

Lemma 7: For a setting (G , r , 1) where G has maximal degree 3
and root r has degree ≤ 2 there is always an optimal protection
strategy that protects the neighbor of a contaminated vertex in
each time step.

Proof!

Trivial for degree r is 1

Degree of r is 2, mimimal counterexample

I. one of the neighbors of r first, II. not a neighbor of r
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Graph of degree 3, root vertex degree 2

Optimal Strategy:

f (u) :=


dist(u, r) + 1 : if u ∈ V1 ∪ V2

dist(u, r) + C (u)− 1 : if u ∈ Vc \ V2

∞ : otherwise

Find a vertex u with f (u) = minx∈V f (x). Enclose this vertex by
the path strategy.

Theorem 8: For a problem instance (G , r , 1) of a graph G of
maximum degree 3 and a root vertex of degree 2 the above
strategy is optimal.

Proof!
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Graph of degree 3, root vertex degree 2

Theorem 8: For a problem instance (G , r , 1) of a graph G of
maximum degree 3 and a root vertex of degree 2 the above
strategy is optimal.

Proof:

Last burning vertex u

u ∈ V1,V2, by construction

u ∈ Vc , neighbors n1, n2, n3, and n1 on fire

Also n2 on fire: u, n1 and n2 on a cycle, contradiction!

n2 and n3 are protected.

Another neigbor of n2 or n3 is on fire, say p of n2

Otherwise: protect u one step earlier

u, n2, p build the cycle
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Graph of degree 3, root vertex degree 2

Theorem 9: For a problem instance (G , r , 1) of a graph
G = (V ,E ) of maximum degree 3 and a root vertex of degree 2
the decision problem can be solved in polynomial time and the
maximum number of vertices that can be saved is
|V | −minx∈V f (x).

Proof: Compute the values in polynomial time!
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NP-Competeness for general graphs

Theorem 10: The firefighter decision problem for graphs is
NP-hard.

Proof:

k-Clique reduction to the decision problem

Construct Graph G ′ = (V ′,E ′) from Graph G = (V ,E )

Vertex sv for every v ∈ V , Vertex se for every e ∈ E

Edges (sv , se) and (su, se) for every edge e = (u, v)

Root vertex r and k − 1 colums of k vertices vi ,j

Connect the layer from left to right and to all sv

Example Blackboard!
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NP-Competeness for general graphs

Theorem 10: The firefighter decision problem for graphs is
NP-hard.

Proof:
1 k-Clique exists

Save k vertices of the k Clique
Saves k ′ = k +

(
k
2

)
+ 1 vertices

2 Saving k ′ = k +
(
k
2

)
+ 1 vertices?

Before step k : Saving se or ai,j needless, only one
Saving k vertices sv .
k ′ possible, if k-Clique exists
Another one in the last step

Elmar Langetepe Theoretical Aspects of Intruder Search



NP-Competeness for general graphs

Theorem 11: For a problem instance (T , r , 1) of a rooted tree
T = (V ,E ) the greedy strategy gives a 1

2 approximation for the
optimal number of vertices protected. This bound is tight.

Proof:

1 Example for k+1
2(k−1) 7→ 1

2

2 Tightness

Greedy versus opt, time steps: Savings
optA not better than greedy, optB better than greedy.
2SG ≥ optA + optB
Greedy competes with optA at the start
Moment where Greedy is worse that opt
optB choose v , depth l , also greedy can choose l or greedy
has chosen a predecessor of v before ⇒ greedy saves at least
the vertices of optB before
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Efficient Algorithm for Trees

Firefighter Decision Problem (Protection by k guards):
Instance: A Graph G = (V ,E ) of degree d with root vertex r and
p firefigther per step and an integer k .
Question: What is the strategy that saves a maximum number of
vertices by protecting k vertices in total?
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Efficient Algorithm for Trees

Dynamic Programming Approach: Place k guards! Structural
Property!

Lemma 12: For any optimal strategy for an instance of the
firefigther decision problems on trees (protection by k guards,
saving k vertices) the vertex defended at each time is adjacent to a
burning vertex. There is an integer l , so that all protected vertices
have depth at most l , exactly one vertex pi at each depth is
protected and all ancestors of pi are burning.

Time step t, place guard with non-burning neighbor

Placement closer to the root improves strategy

depth t at step t, inductively!
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Efficient Algorithm for Trees

Dynamic Programming Approach: Place k guards!

Lemma 12: Guards in depth 1, 2, . . . , k

Lk , vertices of T with depth ≤ k

Order for the processing: Subproblems!

Preorder of the graph! to the left, rightmost

l(v), vertex to the left of v

Tv subtree at v

T v tree with vertices from Lk to the left of v , including v

Recursion more general: Vector X ∈ {1, 0}k
X (j) = 1 place guard in step j , X (j) = 0 n guard in step j

Av (X ): Optimal strategy for X in T v , based on T l(v)

Recursion!
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Efficient Algorithm for Trees

Problem! No two guards on a single path! Set guard after depth i !

r
1

2

3

4 5 6 7

8 9

10

11

12

13 14

15 16

17

18

19

20 21

L3

v

T v

l(v)

Av((1, 1, 0), 0)

|Tv| + Al(v)((1, 0, 0), 1) or Al(v)((1, 1, 0), 0)

|Tv| = 1

v∗

22
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Efficient Algorithm for Trees

Av (X , i) :=

Optimal protection number in T v for strategy that sets the guards
w.r.t. entries of X and no guard is set on the path from r to v at
depth ≤ i
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Efficient Algorithm for Trees

Theorem 13: Computing the optimal protection strategy for k
guards on a tree T of size n can be done in O(n2kk) time.

Av (X , i) :=

max

 Al(v)(X ,min(d(v)− 1, i))

[X (d(v)) = 1 & d(v) > i ] ·
(
|Tv |+ Al(v)(X v , d(v)− 1)

)


Compute Lk , l(v), |T v | in linear time!

Traverse the vertices of Lk from left to right

At most n × 2k × k entries Av (X , i)

n stands for v , 2k stands for X , k stands for i .
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Efficient Algorithm for Trees

Corollary 14: Computing a strategy for a tree T of size n that
saves at least k vertices can be done in O(n2kk) time.

Run above algorithm for i = 1, . . . , k

Sufficient!∑k
i=1 i2in ≤ kn

∑k
i=1 2i = (2k+1 − 2)kn
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