Theoretical Aspects of Intruder Search

MA-INF 1318 Manuscript Wintersemsester 2015/2016

Elmar Langetepe

Bonn, 19. October 2015

Chapter 4

Randomized variants

In this chapter and before turning over to some geometric variants of the intruder search problem, we would like to resume the graph decontamination problem for stationary guards in order to show that there are also randomized strategies and problem variants that can be discussed.
We show a slightly better approximation as the greedy algorithm for trees by a randomized strategy. Additionally, we interpret the search number of a graph in the configuration that the fire spreads from any vertex with the same probability. We concentrate on positive results.

4.1 Better approximations for trees by randomization

We pick up the firefighter problem for trees again. As already asked for in Exercise 10 we can formulate the problem as an integer LP by the following rules. Let $v \leq u$ denote that v equals u or is a predecessor of u w.r.t. the root r of tree T.

$$
\begin{array}{lll}
\text { Minimize } & \sum_{v \in V} x_{v} w_{v} & \\
\text { so that } & & \\
x_{r}=0 & =0 & \\
\sum_{v \leq u} x_{v} & \leq 1: \quad \text { for every leaf } u \\
\sum_{v \in L_{i}} x_{v} & \leq 1: \quad \text { for every level } L_{i}, i \geq 1 \\
x_{v} & \in\{0,1\} & : \forall v \in V
\end{array}
$$

In the above integer LP the weights w_{v} denote the number of vertices in the subtree T_{v} of vertex v w.r.t. the root r.
Let opt ${ }_{I L P}$ denote the optimal solution of the above integer LP. For the approximation we solve the problem in polynomial time for $x_{v} \in \mathbb{R}^{\geq 0}$. The optimal solution, opt ${ }_{R L P}$, is a fractional solution so that a subtree T_{v} with $x_{v}=a \leq 1$ is called a-saved, a portion $a \cdot w_{v}$ of the subtree is saved. For two vertices v_{1} and v_{2} on the same path from the root r to a leaf u and v_{1} is ancestor of v_{2} and $x_{v_{1}}=a_{1}$ and $x_{v_{2}}=a_{2}$ the vertices of $T_{v_{2}}$ are ($a_{1}+a_{2}$)-saved. The remaining vertices of $T_{v_{1}}$ are only a_{1}-saved.
The simple idea is that we would like to use a rounding scheme. But we do this in a randomized fashion. For each level we interpret the a-values as a probability dsitribution for choosing a vertex to be safe. This is a rounded strategy w.r.t. the distribution. On each level we simply choose a vertex at random according to its distribution. Note that the sum of the a-values for level i could be smaller than 1 . We interpret the remaining portion as the probability of choosing none of the vertices in this level. The main problem is that we might choose vertices that are
on the same path from the root to a leaf. If no such double-protections occur the expected value of the rounded strategy would be at least $\mathrm{opt}_{I L P}$ and the expected approximation value would be indeed 1 .
If also a successor of a vertex is choosen by our procedure, we simply delete it in the final solution and do not choose another vertex at this level. This makes the choosing procedure independent for every level. Altogether, the only loss we have is for the double-protections. Let us assume that they can occur. What happens if the a tree $T_{v_{i}}$ at level i is fully saved by the fractional strategy? We would like to argue that in the worst-case the fractional strategy has assigned a $1 / i$ fraction to all vertices on the path from r to v_{i} and the subtree is fully saved by the rounding scheme with probability

$$
1-(1-1 / i)^{i} \geq 1-\frac{1}{e}
$$

We put this intuition into a formal argument.
Theorem 41 Consider an algorithm that protects the vertices w.r.t. the probability distribution given by opt RLP . The expected approximation ratio of the above strategy for the number of vertices protected is $\left(1-\frac{1}{e}\right)$.

Proof. Let S_{F} denote the fractional solution for opt ${ }_{R L P}$. For an integer solution, we choose a vertex on each level w.r.t. the probability distribution from opt ${ }_{R L P}$. Let S_{I} denote the outcome of this assignment. We would like to show, that the expected value of S_{I} is larger than $\left(1-\frac{1}{e}\right)$ times the value of S_{F} which in turn outperforms opt ${ }_{I L P}$.
Let x_{v}^{F} denote the value of x_{v} for the fractional strategy and let x_{v}^{I} denote the value $\{0,1\}$ of the integer strategy. For convenience we denote $y_{v}=\sum_{u \leq v} x_{u} \in\{0,1\}$, which indicates whether v is finally saved or not. Let $y_{v}^{F}=\sum_{u \leq v} x_{u}^{F} \leq 1$ denote the fraction of v saved by the fractional strategy. For $y_{v}=1$ it suffices that one of the predecessor of v was chosen. Let $r=v_{0}, v_{1}, v_{2}, \ldots, v_{k}=v$ be the path from r to v, so we have

$$
\operatorname{Pr}\left[y_{v}=1\right]=1-\prod_{i=1}^{k}\left(1-x_{v_{i}}^{F}\right)
$$

For example, the probability that v_{2} is safe is $x_{1}+\left(1-x_{1}\right) x_{2}=1-\left(1-x_{1}\right)\left(1-x_{2}\right)$ and the probability that v_{3} is safe is $1-\left(1-x_{1}\right)\left(1-x_{2}\right)+\left(1-x_{1}\right)\left(1-x_{2}\right) x_{3}=1-\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)$ and so on.
Thus we compute

$$
\begin{align*}
\operatorname{Pr}\left[y_{v}=1\right] & =1-\prod_{i=1}^{k}\left(1-x_{v_{i}}^{F}\right) \\
& \geq 1-\left(\frac{\sum_{i=1}^{k}\left(1-x_{v_{i}}^{F}\right)}{k}\right)^{k}=1-\left(\frac{k-\sum_{i=1}^{k} x_{v_{i}}^{F}}{k}\right)^{k} \\
& =1-\left(\frac{k-y_{v}^{F}}{k}\right)^{k} \\
& =1-\left(1-\frac{y_{v}^{F}}{k}\right)^{k} \geq 1-e^{-y_{v}^{F}} \geq\left(1-\frac{1}{e}\right) y_{v}^{F} . \tag{4.1}
\end{align*}
$$

The first inequality is a standard inequality for means of positive real values $\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq$ $\sqrt[n]{x_{1} \cdot x_{2} \cdots x_{n}}$. The second and third inequalities stem from classical analysis where we use the fact that $0 \leq y_{v}^{F} \leq 1$ holds.

The value of S_{F} is simply the sum of all y_{v}^{F}. Thus, we conclude

$$
\mathbf{E}\left(\left|S_{I}\right|=\sum_{v \in V} \operatorname{Pr}\left[y_{v}=1\right] \geq\left(1-\frac{1}{e}\right) \sum_{v \in V} y_{v}^{F}=\left(1-\frac{1}{e}\right)\left|S_{F}\right| .\right.
$$

Altogether, we have a randomized polynomial time algorithm for trees with an expected approximation ratio better than the $\frac{1}{2}$-approximation of greedy.

Exercise 17 Prove $\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} \cdot x_{2} \cdots x_{n}}$ for positive real values x_{i}. Also prove the last two inequalities of Equation 4.1 in the proof of Theorem 41.

4.2 Search numbers for random fire sources

The second part on randomization is that we might use it to consider the situation that the starting vertex of the fire has some influence on the number of agents required. Therefore, in this section we again consider the firefigther problem on graphs but the start of the fire is choosen uniformly at random among all vertices. The question is, what is the number of agents required so that for a given class C of graphs it can be expected that at least linear number of vertices can be saved.
This subsumes many questions handled before. We would like to have a classification by the properties of C, we would like to find a minimum number k of agents required and we use an expected value for assuming that the fire can start in any vertex with the same probability.
For a graph $G=(V, E)$ and a fixed number k of agents, the k-surviving rate, $s_{k}(G)$, is the expectation of the proportion of vertices that can be saved if the fire can start from any vertex with the same probability. We are looking for classes, C, of graphs G so that for a fixed constant $\epsilon, s_{k}(G) \geq \epsilon$ holds for any $G \in C$. This means that at least $\epsilon \cdot|V|$ vertices will be saved. For a given graph G, a given k and a vertex $v \in V$ let $\mathrm{sn}_{k}(G, v)$, denote the number of vertices that can be protected by k agents, if the fire starts at v.
We are also searching for the minimal number k that guarantees $s_{k}(G) \geq \epsilon$. This means that

$$
\frac{1}{|V|} \sum_{v \in V} \operatorname{sn}_{k}(G, v) \geq \epsilon|V|
$$

has to be shown. For a class C let the minimum number k that guarantees $s_{k}(G)>\epsilon$ for any $G \in C$ be denoted as the firefighter-number, $\mathrm{ffn}(C)$, of C.
Firefighter-Number for a class C of graphs:
Instance: A class C of graphs $G=(V, E)$.
Question: Assume that the fire breaks out at any vertex of a graph $G \in C$ with the same probability. Compute $\mathrm{ffn}(C)$.

Theorem 42 For planar graphs we have $2 \leq f f n(C) \leq 4$.
There is a simple argument for the lower bound $2 \leq \mathrm{ffn}(C)$. Consider a planar bipartite complete graph with 2 and $n-2$ vertices on the corresponding sides. For any starting vertex at most one vertex can be saved and $\frac{1}{n}$ will become arbitrarily small.
For the upper bound we first show a somewhat easier result that shows the main idea. The vertices are subdivided into classes X and Y, where a root vertex from set X allows to save many (a linear number of) vertices and a root vertex from the set Y allows to save only few (almost zero) vertices. Finally, $|Y| \leq c|X|$ gives the bound.

Theorem 43 For planar graphs G with no 3 - and 4 -cycle, we have $s_{2}(G) \geq 1 / 22$.
Proof. We make use of the Euler formula, $c+1=v-e+f$, for planar graphs with e edges, v vertices, f faces and c components. We assume that the graph is connected, that is $c=1$. A planar graph with no 3 - and 4 -cycle has average degree less than $\frac{10}{3}$. If not, we assume $\frac{10}{3} v \geq 2 e$, summing up the degrees of al vertices gives twice the number of edges. We can also conclude $5 f \leq 2 e$, since any face has at least 5 edges that can neighbor two faces. This means $f \leq \frac{2}{5}$. Inserting $v \geq \frac{3}{5} e$ into the formula gives $f \geq 2+\frac{2}{5}$, a contradiction. With similar arguments we can show that a graph with no 3 -, 4 and 5 -cylces has average degree less than three, which is the question of Exercise 18.
We subdivide the vertices V of G into groups w.r.t. the degree and the neighborship.

- Let X_{2} denote the vertices of degree ≤ 2.
- Let Y_{4} denote the vertices of degree ≥ 4.
- Let X_{3} denote the vertices of degree exactly 3 but with at least one neighbor of degree ≤ 3.
- Let Y_{3} denote the vertices of degree exacly 3 but with all neighbors having degree >3 (degree 3 vertices not in X_{3}).

Let x_{2}, x_{3}, y_{3} and y_{4} denote the cardinality of the sets, respectively.
Let $|V|=n$. For a vertex starting in X_{2}, by two agents we protect the neighbors and safe $n-2$ vertices. For a vertex in X_{3}, we save two neighbors so that the fire spreads to the neighbor u of degree ≤ 3 and in the next step we protect the remaining neighbors of u, thus protecting $n-2$ vertices in total. For starting vertices in Y_{3} and Y_{4}, we assume that we can save no vertex.
We have to show that $\frac{1}{n} \sum_{v \in V} \operatorname{sn}_{k}(G, v) \geq \epsilon \cdot n$ holds and we consider

$$
\begin{equation*}
s_{2}(G)=\frac{1}{n^{2}} \sum_{v \in V} \operatorname{sn}_{k}(G, v) \geq \frac{1}{n^{2}}\left(x_{2}+x_{3}\right)(n-2)=\frac{n-2}{n} \cdot \frac{x_{2}+x_{3}}{x_{2}+x_{3}+y_{3}+y_{4}} \tag{4.2}
\end{equation*}
$$

since $x_{2}+x_{3}+y_{3}+y_{4}=n$ holds.
We first would like to compute a correspondance between Y_{3} and Y_{4} and consider the graph $G_{Y}=\left(V_{Y}, E_{Y}\right)$ that consists of the edges of G with precisely one vertex in Y_{3} and one vertex in Y_{4}. The graph G_{Y} has precisely $3 y_{3}$ edges and at most $y_{3}+y_{4}$ vertices. Note that some of the vertices of Y_{4} might be neighbors for more than one vertex of Y_{3}. The graph G_{Y} is bipartite and a subgraph of G. A cycle of size 5 has to go forth and back from Y_{3} to Y_{4} vertices and has to end at the same class Y_{4} or Y_{3}. Therefore in G_{y} we only have cycles of size at least 6 and by Exercise 18 the average degree of vertices of G_{Y} is at most 3 . This means by counting $3\left(y_{3}+y_{4}\right)$, we have counted at least any edge twice, which gives $3\left(y_{3}+y_{4}\right) \geq 6 y_{3}$ and $y_{3} \leq y_{4}$.
Now we would like to compute a fixed relation between $x_{2}+x_{3}$ and $y_{3}+y_{4}$. By the average degree, by counting $\frac{10}{3}\left(x_{2}+x_{3}+y_{3}+y_{4}\right)$ edges we have at least counted $3 x_{3}+3 y_{3}+4 y_{4}$ edges, which gives $9 x_{3}+9 y_{3}+12 y_{4} \leq 10\left(x_{2}+x_{3}+y_{3}+y_{4}\right)$ and in turn $2 y_{4}-y_{3} \leq 10 x_{2}+x_{3}$. By $y_{3} \leq y_{4}$ we have $y_{4} \leq 10 x_{2}+x_{3}$ and also $y_{3}+y_{4} \leq 20 x_{2}+2 x_{3} \leq 20\left(x_{2}+x_{3}\right)$.
Now insertion into Equation 4.2 gives

$$
\begin{equation*}
s_{2}(G) \geq \frac{n-2}{n} \cdot \frac{x_{2}+x_{3}}{x_{2}+x_{3}+y_{3}+y_{4}} \geq \frac{n-2}{n} \cdot \frac{x_{2}+x_{3}}{21\left(x_{2}+x_{3}\right)}=\frac{n-2}{21 n} . \tag{4.3}
\end{equation*}
$$

If G has only two vertices, in any case the vertex distinct from the root can be saved. If G hat $3 \leq n \leq 44$ vertices, at least $\frac{2}{44}$ are saved in a single step. For $n \geq 44$ we have $s_{2}(G) \geq \frac{42}{21 \cdot 44}=\frac{1}{22}$. So the expected value of saved vertices is always $\frac{1}{22} n$.

Exercise 18 Prove by the Euler formula that a graph with no 3-, 4-cycle and 5-cylces has average degree less than three.

Finally, we would like to prove the statement $\mathrm{ffn}(C) \leq 4$ of Theorem 42 . To this end we prove the following result with a precise value of $s_{4}(G)$ for planar graphs.

Theorem 44 Using four firefighters in the first step and then always three firefighters in each step, for every planar graph G there is a strategy such that $s_{4}(G) \geq \frac{1}{2712}$ holds.

Proof. We can assume that G is a maximal planar graph. Inserting more edges will only help the fire. This means that G is a triangulation. We can also assume that G is simple, has no multiedges and any face has exactly three edges.

We provide the proof in several steps. Similarily, to the proof above we subdivide the vertices V of G into sets X and Y. Where X will be the set of vertices where a strategy saves at least $n-6$ vertices and for Y we do not expect to save any vertex, for $|V|=n$.
The final conclusion is that for some $\alpha=\frac{1}{872}$ we will conclude

$$
\begin{equation*}
|Y| \leq\left(93+\frac{3}{\alpha}\right)|X|=2709|X| \tag{4.4}
\end{equation*}
$$

Thus from $|X|+|Y|=n$ and Equation 4.2 we conclude

$$
\begin{equation*}
s_{4}(G) \geq \frac{n-6}{n} \cdot \frac{|X|}{|X|+|Y|}>\frac{n-2}{n} \cdot \frac{|X|}{2710|X|}=\frac{n-6}{2710 n} \tag{4.5}
\end{equation*}
$$

For $n \geq 10846$ we have

$$
s_{4}(G) \geq \frac{1}{2710}-\frac{6}{4 \cdot 2710^{2}} \geq \frac{2710-3 / 2}{2710^{2}} \geq \frac{1}{2712}
$$

For $2 \leq n<10846$ we save at least $\min (4, n-1)$ in the first step, which gives also $s_{4}(G) \geq \frac{1}{2712}$. The remaining task is, to establish the above bounds. First, we subdivide the vertices accordingly. Note that for starting vertices of degree 3 or four we can save $n-1$ vertices in the first step.

- For degree $3 \leq d \leq 6$ let X_{d} denote the vertices that guarantee to save at least $|V|-6$ vertices.
- All other vertices form the set Y_{d} for $d \geq 5$.

Also note that a starting vertex v of degree 5 with a neighbor u of degree at most 6 is in X_{5}. Because of the triangulation u and v have two common neighbors n_{1} and n_{2}. In the first step, we let the fire only spread to u by protecting 4 neigbors at u. Then the neighbors v, n_{1} and n_{2} of u are already protected. So we fully protect the graph in the next step by 3 agents.
We require some more structural properties for the relationsship between X and Y which stem from the triangulation. The length of a path in the graph is given by the number of edges.

Lemma 45 For a vertex $v \in Y_{6}$ there is a path of length at most 3 from v to a vertex u that has degree distinct from $v(i . e ., \neq 6)$ and the inner vertices of the path have degree exactly 6.

Proof. Let us assume that this is not the case. In the first step we can always protect 4 subsequent neighbors of v as depicted in Figure ??. If one of the remaining two neighbors (step 1) does not have degree 6 , we are done. So assume that also these two neigbors have degree 6. Because of the triangulation, they will span a hexagon and we can protect 3 neighbors of these two as depicted in Figure ??. The fire spread to only two remaining neighbors (step 2). If one of them does not have degree 6 we are done again. So assume that both also have degree 6 and we extend the hexagonal grid. We can protect the neighbors by three agents as depicted in Figure ?? and only one vertex remains on fire after the fire spreads (step 3). If this vertex does not have degree 6 we are done again. But if this vertex also have degree 6 we will finally enclose the fire in the next step and only 6 vertices ($v, 2$ in (step 1), 2 in (step 2), 1 in (step3)) gets burned in total, a contradiction to $v \in Y_{6}$. Without the above property, v will be in X_{5} !

The next lemma tells us something about vertices from Y_{d} with $d \geq 7$ related to y_{5}. Let $d(v)$ denote the degree of vertex v.

Lemma 46 A vertex with $d(v) \geq 7$ has at most $\left\lfloor\frac{1}{2} d(v)\right\rfloor$ neighbors in Y_{5}.
Proof. A neighbor u of v from Y_{5} has two neighbors n_{1} and n_{2} in common with v. If one of them has degree strictly less than 7 , the vertex u belongs to X_{5}. So the vertices from Y_{5} around v are seperated by vertices of degree ≥ 7, which gives the bound.

Finally, we make use of the following structural lemma that stems from the Euler formula and the simple, maximal planar triangulation.

Lemma 47 Foir a simple, maximal planar graph we have

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)=-12 . \tag{4.6}
\end{equation*}
$$

Proof. For a maximal, simple planar graph we have $3 f=2 e$, counting the edges of every triangle face, counts any edge exactly. Additionally, we have $\sum_{v \in V} d(v)=2 e$ because summing up the degree of the vertices counts any edge twice. The Euler formula says $v-e+f=2$ and we conclude $v-e+\frac{2}{3} e=2 \Longleftrightarrow 2 e-6 v=-12$ which gives the conclusion.

Now we present the main idea for obtaining Equation. The idea is that we distribute the intitial potential $p_{1}(v):=(d(v)-6)$ of every vertex among the others so that finally any vertex has potential $p_{2}(v)$ and also $\sum_{v \in V} p_{1}(v)=\sum_{v \in V} p_{2}(v)=-12$ holds.
The rules for the distribution are as follows:
Rule A: A vertex v of degree at least 7 gives a value of $\frac{1}{4}$ to each neighbor vertex from Y_{5}.
Rule B: For a vertex $v \in Y_{6}$ we choose exactly one vertex u with $d(u) \neq 6$ and distance $d(v, u) \leq 6$ as in Lemma 45. The vertex u gives a value of $\alpha>0$ to v.

We would like to choose α accordingly, so that the above property $\sum_{v \in V} p_{1}(v)=\sum_{v \in V} p_{2}(v)=$ -12 . Such a distribution exists and it has a desired property.

Lemma 48 There is a constant $\alpha>0$ such that $\sum_{v \in V} p_{1}(v)=\sum_{v \in V} p_{2}(v)=-12$ holds and for every $v \in X$ we have $p_{2}(v)>-3-93 \alpha$ and or every $v \in Y$ we have $p_{2}(v) \geq \alpha$

Before we prove this final lemma, we use its conclusion. An $\alpha=\frac{1}{872}$ will do the job. We then conclude

$$
-12=\sum_{v \in V} p_{2}(v) \geq(-3-93 \alpha)|X|+\alpha|Y|
$$

and this gives

$$
|Y| \leq\left(93+\frac{3}{\alpha}\right)|X|<2790|X|
$$

which is Equation. It remains to prove Lemma 48.

Exercise 19 Present the precise strategies that stem from Theorem 43 and Theorem 44. Analyse the corresponding running time.

