Theoretical Aspects of Intruder Search
Course Wintersemester 2015/16
Dynamic strategies on Trees

Elmar Langetepe

University of Bonn

November 10th, 2015
Start vertex v and order of the subtrees:

$$\text{cs}(T_v(z)) = \max\{\text{cs}(T_v(z_1)), \text{cs}(T_v(z_2)) + w(z)\}$$
Startvertex v and order of the subtrees:

\[cs(T_v(z)) = \max\{cs(T_v(z_1)), cs(T_v(z_2)) + w(z)\} \]
Lemma 23: Let z_1, \ldots, z_d be the $d \geq 2$ children of a vertex z in T_v and assume that $cs(T_v(z_i)) \geq cs(T_v(z_{i+1}))$ for $i = 1, \ldots, d - 1$. We have

$$cs(T_v(z)) = \max\{cs(T_v(z_1)), cs(T_v(z_2)) + w(z)\} \quad (1)$$

if the tree T is a tree with unit weights.

Proof:

- $cs(T_v(z)) \geq cs(T_v(z_1))$, order of cleaning
- Case 1: $cs(T_v(z_1)) \geq cs(T_v(z_2)) + w(z)$
- Clear $T_v(z)$, set $w(z)$ on z, clear all $T_v(z_i)$ by $cs(T_v(z_1))$ agents but $T_v(z_1)$ last
- Case 2: $cs(T_v(z_1)) < cs(T_v(z_2)) + w(z)$ is necessary!
Lemma 23: Let z_1, \ldots, z_d be the $d \geq 2$ children of a vertex z in T_v and assume that $cs(T_v(z_i)) \geq cs(T_v(z_{i+1}))$ for $i = 1, \ldots, d - 1$. We have

$$cs(T_v(z)) = \max\{cs(T_v(z_1)), cs(T_v(z_2)) + w(z)\}$$

(2)

if the tree T is a tree with unit weights.

Case 2: $cs(T_v(z_1)) < cs(T_v(z_2)) + w(z)$

Show: $cs(T_v(z_2)) + w(z) - 1$ not sufficient

1. $T_v(z_2)$ is cleared before $T_v(z_1)$: While $cs(T_v(z_2))$ agents clear $T_v(z_2)$ there are only $w(z) - 1 = 0$ agents left for blocking a vertex in $T_v(z_1)$. Recontamination!

2. $T_v(z_1)$ is cleared before $T_v(z_2)$: While $cs(T_v(z_1))$ agents clear $T_v(z_1)$ there are no more $w(z) - 1 = 0$ agents left for blocking a vertex in $T_v(z_2)$ (because $cs(T_v(z_1)) = cs(T_v(z_2))$). Recontamination!
Design of a strategy: Example! Barriere et al. Flaw!

\[cs(T_v(z)) = \max \{ cs(T_v(z_1)), cs(T_v(z_2)) + w(z) \} \] (3)

\[\max \{ cs(T_x(z_1)), cs(T_x(z_2)) + w(v) \} = \max \{ 8, 7 + 5 \} = 12 \]

But 10 agents are also sufficient!
Corollary 24: For a unit weighted tree T of size n and for a given starting vertex v we can compute the optimal monotone contiguous strategy starting at v in $O(n)$ time. An overall optimal contiguous strategy can be computed in $O(n^2)$.

Proof: For any root v compute the values $cs(T_v(x))$ starting from the leafes. Do this for all $v \in T$.
Labels in the tree

Compute the information in one walkthrough!
Local recursive labeling: $\lambda_x(e)$ for the links $e = (x, y)$ adjacent to x.

Let $e = (x, y)$ be a link incident to x.

1. If y is a leaf, set $\lambda_x(e) = w(y)$.

2. Otherwise, let d be the degree of y and let x_1, \ldots, x_{d-1} be the incident vertices of y different form x. Let $\lambda_y(y, x_i) =: l_i$ and $l_i \geq l_{i+1}$. Then,

$$\lambda_x(e) := \max\{l_1, l_2 + w(y)\}.$$
1 Start with the leaves and for any leaf y and for $e = (x, y)$ send a message $l = w(y)$ to x. After receiving this messages, x sets $\lambda_x(e) = l$.

2 Consider a vertex y of degree d that has received at least $d - 1$ messages l_i from the incident certices x_1, \ldots, x_{d-1} and let x be the remaining incident vertex. Let $l_i \geq l_{i+1}$. Send a message $l = \max\{l_1, l_2 + w(y)\}$ to x, after receiving the message x, set $\lambda_x((x, y)) = l$.
Example for general tree

$\lambda_{v_3}(e_1) = 7$
$\lambda_{v_4}(e_1) = 10$
$\lambda_{v_5}(e_4) = 6$
$\lambda_{v_5}(e_5) = 1$
$\lambda_{v_5}(e_6) = 1$
$\lambda_{v_5}(e_7) = 1$
$\lambda_{v_6}(e_5) = 4$
$\lambda_{v_6}(e_6) = 10$

$\lambda_{v_1}(e_2) = 3$
$\lambda_{v_1}(e_3) = 5$
$\lambda_{v_2}(e_3) = 10$
$\lambda_{v_2}(e_4) = 6$
$\lambda_{v_3}(e_1) = 7$
$\lambda_{v_3}(e_2) = 3$
$\lambda_{v_3}(e_4) = 10$
$\lambda_{v_3}(e_5) = 6$
$\lambda_{v_3}(e_6) = 10$
$\lambda_{v_3}(e_7) = 12$

$v_1, v_2, v_3, v_4, v_5, v_6, v_7$
Lemma 24: The links of a tree T can be labeled with labels λ_x by the above message sending algorithm by $O(n)$ messages in total.

Proof by construction!
Lemma 26: For a unit weighted tree $T = (V, E)$ and an edge $e = (x, y) \in E$ we have $cs(T_x(y)) = \lambda_x(e)$.

Proof: By induction!

- y leaf and $\lambda_x(e) = w(y)$ for $h(y) = 0$
- Statement holds for $0 \leq h(y) < k$ and consider $h(y) = k$
- $e = (x, y), x_1, \ldots, x_d$ the $d \geq 1$ children of y in $T_x(y)$
- $T_y(x_i) = \lambda_y((y, x_i))$ by induction hypothesis, $T_y(x_i) = T_x(x_i)$ by definition
- $cs(T_x(x_i)) \geq cs(T_x(x_{i+1}))$ for $i = 1, \ldots, d - 1$
- Recursion for $T_x(y)$ and $\lambda_x((x, y))$ identical!
Order all $\lambda_v((v, x_i))$ for all $i = 1, \ldots, d$ incident edges (v, x_i) so that $\lambda_v((v, x_i)) \geq \lambda_v((v, x_{i+1}))$, compute

$$\mu(v) = \max\{\lambda_v((v, x_1)), \lambda_v((v, x_2)) + w(v)\}.$$

(4)

$$\mu(v) = \text{cs}(T_v) \text{ and } \min_{v \in V} \mu(v) = \text{cs}(T).$$

Strategy: By the increasing order of the values λ_x at vertex x!
\[\mu(v_3) = \max(\lambda_{v_3}(e_1), \lambda_{v_3}(e_3) + 7) = 12 \]
\[\mu(v_5) = \max(\lambda_{v_5}(e_4), \lambda_{v_5}(e_5) + 5) = 10 \]
\[10.\lambda_{v_7}(e_6) = 10 \]

8. \(\lambda_{v_3}(e_1) = 7 \)
4. \(\lambda_{v_4}(e_1) = 10 \)
6. \(\lambda_{v_4}(e_4) = 6 \)
3. \(\lambda_{v_5}(e_6) = 1 \)
1. \(\lambda_{v_5}(e_5) = 1 \)

7. \(\lambda_{v_5}(e_4) = 10 \)
5. \(\lambda_{v_5}(e_5) = 4 \)
4. \(\lambda_{v_6}(e_5) = 10 \)

2. \(\lambda_{v_3}(e_3) = 5 \)
1. \(\lambda_{v_3}(e_2) = 3 \)
11. \(\lambda_{v_2}(e_3) = 10 \)
12. \(\lambda_{v_1}(e_2) = 12 \)

\[\mu(v_3) = \max(\lambda_{v_3}(e_1), \lambda_{v_3}(e_3) + 7) = 12 \]
\[\mu(v_5) = \max(\lambda_{v_5}(e_4), \lambda_{v_5}(e_5) + 5) = 10 \]
\[10.\lambda_{v_7}(e_6) = 10 \]

8. \(\lambda_{v_3}(e_1) = 7 \)
4. \(\lambda_{v_4}(e_1) = 10 \)
6. \(\lambda_{v_4}(e_4) = 6 \)
3. \(\lambda_{v_5}(e_6) = 1 \)
1. \(\lambda_{v_5}(e_5) = 1 \)

7. \(\lambda_{v_5}(e_4) = 10 \)
5. \(\lambda_{v_5}(e_5) = 4 \)
4. \(\lambda_{v_6}(e_5) = 10 \)

2. \(\lambda_{v_3}(e_3) = 5 \)
1. \(\lambda_{v_3}(e_2) = 3 \)
11. \(\lambda_{v_2}(e_3) = 10 \)
12. \(\lambda_{v_1}(e_2) = 12 \)
Theorem 27: On optimal contiguous strategy for a unit weighted tree $T = (V, E)$ can be computed in $O(n)$ time and space.

Proof:

- Calc. messages an μ values in $O(n)$ time
- Register only three greatest values for every vertex

Example: Applet!
Theorem 28: For unit weights and for any number of vertices n, we have $\lfloor \log_2 n \rfloor - 1 \leq cs(n) \leq \lfloor \log_2 n \rfloor$.

Two directions!
Lemma 29: For every \(n \geq 1 \) we find trees \(T_n \) with
\[
\text{cs}(T_n) \geq \lceil \log_2(\frac{2}{3}(n + 1)) \rceil \geq \lceil \log_2 n \rceil - 1.
\]

Proof:

- Case 1: \(n \) equals \(2^k - 1 \)
 - Choose complete binary tree
 - \(\text{cs}(T_n) = k - 1 = \log_2(n + 1) - 1 \geq \log_2 \lceil \frac{2}{3}(n + 1) \rceil \)
Lower and upper bounds for the contiguous search

- Case 1: n equals $2^k - 1$
- $cs(T_n) = k - 1 = \log_2(n + 1) - 1 \geq \log_2\left(\frac{2}{3}(n + 1)\right)$

$k = 4$ and $n = 2^k - 1$

$\lambda_v((v, u)) = k - \text{level}(u)$
$\lambda_u((v, u)) = k - 1$
$\mu(r) = k$ and $\mu(u \neq r) = k - 1$
Lemma 29: For every \(n \geq 1 \) we find trees \(T_n \) with
\[
cs(T_n) \geq \lfloor \log_2 \left(\frac{2}{3} (n + 1) \right) \rfloor \geq \lfloor \log_2 n \rfloor - 1.
\]

Proof:

- Case 1: \(n \) equals \(2^k - 1 \)
- Case 2: \(n \) does not equal \(2^k - 1 \)
- \(n = \sum_{i=1}^{r} 2^{\alpha_i} \) with \(\alpha_1 > \alpha_2 > \cdots > \alpha_r \).
- \(n = 11010 \) in binary representation with \(\alpha_1 = 4, \alpha_2 = 3, \alpha_3 = 2 \).
- Chain of vertices \(x_1, x_2, \ldots, x_r \)
- For any \(x_i \) connect complete binary tree \(T_{\alpha_i} \) of size \(2^{\alpha_i} - 1 \)
- \(2^{\alpha_1} - 1 < n < 2^{\alpha_1+1} - 1 \) and require
 \[
 cs(T_n) = \alpha_1 \geq \log_2 (n + 1) - 1 \geq \log_2 \left(\frac{2}{3} (n + 1) \right) \]
Case 2: \(n \) does not equal \(2^k - 1 \)

\[
\text{cs}(T_n) = \alpha_1 \geq \log_2(n + 1) - 1 \geq \log_2\left(\frac{2}{3}(n + 1)\right)
\]

\[
n = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 11010
\]

\[
\lambda_{y_1}((v, y_1)) = \alpha_1 - 1
\]

\[
\lambda_{y_1}((x_1, y_1)) = \alpha_2 + 1 = \alpha_1
\]
Lemma 30: For every $n \geq 1$ and unit weights, $\lfloor \log_2 n \rfloor$ agents are sufficient for a contiguous search strategy.

Proof: Arbitrary tree T_r with root r, $cs(T)$, construct T_r'

1. For a node x and its $d > 2$ children x_1, x_2, \ldots, x_d ordered by $cs(T_r(x_i)) \geq cs(T_r(x_{i+1}))$ remove all $T_r(x_i)$ for $i > 2$.

2. For a node x with two children x_1 and x_2 and $cs(T_r(x_1)) > cs(T_r(x_2))$, remove $T_r(x_2)$.

3. For a node $x \neq r$ with only one child x_1, remove x and connect x_1 to the parent of x.

4. If there are more than two vertices left, and r has only one child x_1, remove x_1 and connect the children of x_1 to r.
Lemma 30: For every \(n \geq 1 \) and unit weights, \(\lfloor \log_2 n \rfloor \) agents are sufficient for a contiguous search strategy.

Proof:

- Agents required for \(T \) and \(T_r \) are the same, computation of \(\mu(r) \) in \(T_r \) use the same values.
- Weights restricted to one, rule 2. is correct by \(\text{cs}(T_r(x_1)) \geq \text{cs}(T_r(x_2)) + 1 \).
Lower and upper bounds for the contiguous search

1. Binary: Any inner vertex has no more than 2 children! Rule 1 and 2!

 Rule three deletes internal nodes with one child except for the root. Rule 4 make the root have 2 or 0 children.

1. For a node x and its $d > 2$ children x_1, x_2, \ldots, x_d ordered by $cs(T_r(x_i)) \geq cs(T_r(x_{i+1}))$ remove all $T_r(x_i)$ for $i > 2$.

2. For a node x with two children x_1 and x_2 and $cs(T_r(x_1)) > cs(T_r(x_2))$, remove $T_r(x_2)$.

3. For a node $x \neq r$ with only one child x_1, remove x and connect x_1 to the parent of x.

4. If there are more than two vertices left, and r has only one child x_1, remove x_1 and connect the children of x_1 to r.
1. Complete: T'_x not complete and no subtree in T'_x incomplete

1. For a node x and its $d > 2$ children x_1, x_2, \ldots, x_d ordered by $\text{cs}(T_r(x_i)) \geq \text{cs}(T_r(x_{i+1}))$ remove all $T_r(x_i)$ for $i > 2$.

2. For a node x with two children x_1 and x_2 and $\text{cs}(T_r(x_1)) > \text{cs}(T_r(x_2))$, remove $T_r(x_2)$.

3. For a node $x \neq r$ with only one child x_1, remove x and connect x_1 to the parent of x.

4. If there are more than two vertices left, and r has only one child x_1, remove x_1 and connect the children of x_1 to r.