Theoretical Aspects of Intruder Search
Course Wintersemester 2015/16
Graphs and Trees

Elmar Langetepe

University of Bonn

October 20th, 2015
Organisation

- Lecture: Tuesday 16:15 to 17:45
- Exercise groups: Starting 28/29th
 - Wednesday: 14:15-15:45
 - Thursday: 10:15-11:45
- Sign in
- Manuscript on the webpage
- Slides on the webpage
- Exercises
- Today: Introduction
Repetition: Main problems and intention

- Evader/Intruder versus Searcher/Guard
- Escaping/Intruding versus Catching/Avoidance
- Game, Competition
- Different Scenarios: Environment, Facilities, Goal, Model
- Discrete, Continuous, Geometry, Combinatorics
- Interpretation: Possible Position of the Intruder, Decontamination, Firefighting
Repetition: Theoretical Aspects

- Algorithmic track
- Computational complexity
- Correctness or Failure
- Efficiency
- Optimality
- Prerequisites: Algorithms, Datastructure, Analysis, Complexity, Computability
- Models, Methods, Proof Techniques, Tools
Repetition: Different Examples

1. Optimal-Closing-Sequence against Intruder
 - Saving maximum area by closing doors in polygon
 - NP-hard, Reduction of Subset-Sum

2. Catching-an-Evader
 - Grid-Graph game, Evader moves, k stationary Guards
 - Correctness $k = 1$ impossible, $k = 2$, optimal solution by ILP

3. Enclosing-a-Fire
 - Expanding circle in the plane, Build a barrier with speed $v > 1$
 - Barrier Curves: Circle around origin of fire, $v \geq 2\pi$ tight

4. Discrete Fire-Figthing-Curve
 - Grid-Graph, Fire spreads after n steps, barrier cell after b steps
 - Conjecture, $b < \frac{n-1}{2}$ tight bound! Simulation!
Chapter 2: Discrete Scenarios

- Graph $G = (V, E)$, degree d, root r, p firefighters per step
- Different models: Intruder-Search/Firefigthing
- Complexity
- Optimal Algorithms
- Approximation
Graph of degree 3

- NP-complete
- Simple Algorithm for root vertex of degree 2
- Defending a vertex
- $\text{dist}(u, r)$ length of a shortest path from r to u
- V_1 vertices of degree 1, V_2 vertices of degree 2
- V_c vertices of degree 3 that belong to a cycle
- Example
Graph of degree 3, root vertex degree 2

Path Strategy

Lemma 6: Vertex $u \in V_1 \cup V_2$ can be enclosed in time $\text{dist}(u, r) + 1$ and only $\text{dist}(u, r) + 1$ vertices are on fire. Vertex $u \in V_c$ can be enclosed in time $\text{dist}(u, r) + C(u) - 1$ and only $\text{dist}(u, r) + C(u) - 1$ vertices are on fire.

Proof! Constructive!
Optimal Strategy:

\[f(u) := \begin{cases}
\text{dist}(u, r) + 1 & : \text{if } u \in V_1 \cup V_2 \\
\text{dist}(u, r) + C(u) - 1 & : \text{if } u \in V_c \setminus V_2 \\
\infty & : \text{otherwise}
\end{cases} \]

Find a vertex \(u \) with \(f(u) = \min_{x \in V} f(x) \). Enclose this vertex by the path strategy.
Structural Property

Lemma 7: For a setting \((G, r, 1)\) where \(G\) has maximal degree 3 and root \(r\) has degree \(\leq 2\) there is always an optimal protection strategy that protects the neighbor of a contaminated vertex in each time step.

Proof!

- Trivial for degree \(r\) is 1
- Degree of \(r\) is 2, minimal counterexample
- I. one of the neighbors of \(r\) first, II. not a neighbor of \(r\)
Optimal Strategy:

\[
f(u) := \begin{cases}
\text{dist}(u, r) + 1 & : \text{if } u \in V_1 \cup V_2 \\
\text{dist}(u, r) + C(u) - 1 & : \text{if } u \in V_c \setminus V_2 \\
\infty & : \text{otherwise}
\end{cases}
\]

Find a vertex \(u \) with \(f(u) = \min_{x \in V} f(x) \). Enclose this vertex by the path strategy.

Theorem 8: For a problem instance \((G, r, 1)\) of a graph \(G \) of maximum degree 3 and a root vertex of degree 2 the above strategy is optimal.

Proof!
Theorem 8: For a problem instance \((G, r, 1)\) of a graph \(G\) of maximum degree 3 and a root vertex of degree 2 the above strategy is optimal.

Proof:

- Last burning vertex \(u\)
- \(u \in V_1, V_2\), by construction
- \(u \in V_c\), neighbors \(n_1, n_2, n_3\), and \(n_1\) on fire
- Also \(n_2\) on fire: \(u, n_1\) and \(n_2\) on a cycle, contradiction!
- \(n_2\) and \(n_3\) are protected.
- Another neighbor of \(n_2\) or \(n_3\) is on fire, say \(p\) of \(n_2\)
- Otherwise: protect \(u\) one step earlier
- \(u, n_2, p\) build the cycle
Theorem 9: For a problem instance \((G, r, 1)\) of a graph \(G = (V, E)\) of maximum degree 3 and a root vertex of degree 2 the decision problem can be solved in polynomial time and the maximum number of vertices that can be saved is \(|V| - \min_{x \in V} f(x)\).

Proof: Compute the values in polynomial time!
Theorem 10: The firefighter decision problem for graphs is NP-hard.

Proof:

- k-Clique reduction to the decision problem
- Construct Graph $G' = (V', E')$ from Graph $G = (V, E)$
- Vertex s_v for every $v \in V$, Vertex s_e for every $e \in E$
- Edges (s_v, s_e) and (s_u, s_e) for every edge $e = (u, v)$
- Root vertex r and $k - 1$ columns of k vertices $v_{i,j}$
- Connect the layer from left to right and to all s_v
- Example Blackboard!
Theorem 10: The firefighter decision problem for graphs is NP-hard.

Proof:

1. k-Clique exists
 - Save k vertices of the k Clique
 - Saves $k' = k + \left(\frac{k}{2} \right) + 1$ vertices

2. Saving $k' = k + \left(\frac{k}{2} \right) + 1$ vertices?
 - Before step k: Saving s_e or $a_{i,j}$ needless, only one
 - Saving k vertices s_v.
 - k' possible, if k-Clique exists
 - Another one in the last step
Theorem 11: For a problem instance \((T, r, 1)\) of a rooted tree \(T = (V, E)\) the greedy strategy gives a \(\frac{1}{2}\) approximation for the optimal number of vertices protected. This bound is tight.

Proof:

1. Example for \(\frac{k+1}{2(k-1)} \mapsto \frac{1}{2}\)

2. Tightness
 - Greedy versus opt, time steps: Savings
 - \(\text{opt}_A\) not better than greedy, \(\text{opt}_B\) better than greedy.
 - \(2S_G \geq \text{opt}_A + \text{opt}_B\)
 - Greedy competes with \(\text{opt}_A\) at the start
 - Moment where Greedy is worse than \(\text{opt}\)
 - \(\text{opt}_B\) choose \(v\), depth \(l\), also greedy can choose \(l\) or greedy has chosen a predecessor of \(v\) before \(\Rightarrow\) greedy saves at least the vertices of \(\text{opt}_B\) before
Efficient Algorithm for Trees

Firefighter Decision Problem (Protection by k guards):

Instance: A Graph $G = (V, E)$ of degree d with root vertex r and p firefigther per step and an integer k.

Question: What is the strategy that saves a maximum number of vertices by protecting k vertices in total?
Dynamic Programming Approach: Place k guards! Structural Property!

Lemma 12: For any optimal strategy for an instance of the firefighter decision problems on trees (protection by k guards, saving k vertices) the vertex defended at each time is adjacent to a burning vertex. There is an integer l, so that all protected vertices have depth at most l, exactly one vertex p_i at each depth is protected and all ancestors of p_i are burning.

- Time step t, place guard with non-burning neighbor
- Placement closer to the root improves strategy
- Depth t at step t, inductively!
Efficient Algorithm for Trees

Dynamic Programming Approach: Place k guards!

- Lemma 12: Guards in depth 1, 2, \ldots, k
- L_k, vertices of T with depth $\leq k$
- Order for the processing: Subproblems!
- Preorder of the graph! *to the left, rightmost*
- $l(v)$, vertex to the left of v
- T_v subtree at v
- T^v tree with vertices from L_k to the left of v, including v
- Recursion more general: Vector $X \in \{1, 0\}^k$
- $X(j) = 1$ place guard in step j, $X(j) = 0$ n guard in step j
- $A_v(X)$: Optimal strategy for X in T^v, based on $T^{l(v)}$
- Recursion!
Problem! No two guards on a single path! Set guard after depth i!
\[A_v(X, i) := \]

Optimal protection number in \(T^v \) for strategy that sets the guards w.r.t. entries of \(X \) and no guard is set on the path from \(r \) to \(v \) at depth \(\leq i \)
Theorem 13: Computing the optimal protection strategy for k guards on a tree T of size n can be done in $O(n2^k k)$ time.

\[
A_v(X, i) := \max \begin{cases}
A_{l(v)}(X, \min(d(v) - 1, i)) \\
[X(d(v)) = 1 & d(v) > i] \cdot (|T_v| + A_{l(v)}(X^v, d(v) - 1))
\end{cases}
\]

- Compute L_k, $l(v)$, $|T^v|$ in linear time!
- Traverse the vertices of L_k from left to right
- At most $n \times 2^k \times k$ entries $A_v(X, i)$
- n stands for v, 2^k stands for X, k stands for i.
Corollary 14: Computing a strategy for a tree T of size n that saves at least k vertices can be done in $O(n2^k k)$ time.

- Run above algorithm for $i = 1, \ldots, k$
- Sufficient!
- $\sum_{i=1}^{k} i2^i n \leq kn \sum_{i=1}^{k} 2^i = (2^{k+1} - 2)kn$