Theoretical Aspects of Intruder Search
Course Wintersemester 2015/16
Introduction

Elmar Langetepe

University of Bonn

October 20th, 2015
Organisation

- Lecture: Tuesday 16:15 to 17:45
- Exercise groups: Starting next week 28/29th
 Wednesday: 14-16
 Thursday: 10-12
- Sign in
- Manuscript on the webpage
- Slides on the webpage
- Exercises
- Today: Introduction, different topics
Main problems and intention

- Evader/Intruder versus Searcher/Guard
- Escaping/Intruding versus Catching/Avoidance
- Game, Competition
- Different Scenarios: Environment, Facilities, Goal, Model
- Discrete, Continuous, Geometry, Combinatorics
- Interpretation: Possible Position of the Intruder, Decontamination, Firefighting
Theoretical Aspects

- Algorithmic track
- Computational complexity
- Correctness or Failure
- Efficiency
- Optimality
- Prerequisites: Algorithms, Datastructure, Analysis, Complexity, Computability
- Models, Methods, Proof Techniques, Tools
- Today Introduction
Example I: Polygon, Safe an Area, Complexity

- Continuous Problem
- Complexity Result
- NP-hardness
- Reduction

Optimal-Closing-Sequence:

Instance: Simple polygon, set of \(n\) intruders, set of \(m\) doors to be closed successively time \(c_i\), safes area \(A_i\).

Output: Compute the optimal sequence of doors that has to be closed for maximizing the area safed.
Reduction: Subset-Sum with threshold

Subset-Sum:

Instance: n integer numbers a_1, a_2, \ldots, a_n, integer threshold t

Output: Sum of a subset of a_1, a_2, \ldots, a_n as close as possible to t, not exceeding t.

- Reduction to *Optimal-Closing-Sequence*
- Construct Instance in polynomial time
- Solution for *Optimal-Closing-Sequence* \iff Solution for *Subset-Sum*
Circle radius r, center s, intruder start at s

Chords of length a_i, polygonal chain: A_i, B_i, C_i', D_i

Door d_i safes Area $A_i = \frac{h a_i}{4}$

Speed $v(t + 0.5) = r$ for every Intruder

Choose r so that $vt < x_i = \sqrt{r^2 - \left(\frac{a_i}{2}\right)^2}$

Substituting v by $\frac{r}{(t+0.5)}$:

$$\left(\frac{a_i}{2}\right)^2 < \left(1 - \frac{t^2}{(t + 0.5)^2}\right) r^2$$
Reach C_i' after $t + 0.5$ steps, do not reach B_i after t steps. Maximize!
Theorem 1: Computing an optimal-enclosure-sequence is NP-hard.

Proof: Reduction from Subset-Sum, Equivalence!
Example II: Grid Graph

- Discrete Problem
- Correctness/Failure
- Structural Properties

Evader-Enclosure in Grid-Graphs

Instance: A rectangular grid, a start vertex s of the evader and k protecting guards per time step.

Output: Compute an efficient protection strategy that encloses the evader (and finally find the evader).

A Two Player Game!
Example II: Grid Graph, $k = 2$

Evader moves (4Neighborship), Guards will be placed

Elmar Langetepe
Theoretical Aspects of Intruder Search
Example II: Grid Graph, $k = 2$

Evader moves (4Neighborship), Guards will be placed.

- Grid graph with $k = 2$ guards placed at strategic positions to enclose the evader at point s. The graph illustrates the concept of intruder search with theoretical aspects.

- The diagram shows a grid with 4 neighbors for each point, highlighting the movement and placement strategy for guards to efficiently enclose the evader.
Example II: Grid Graph, $k = 2$

Evader moves (4Neighborship), Guards will be placed

![Diagram of a grid graph with evader locations marked as s, and guards marked as $k = 2$.]
Example II: Grid Graph, $k = 2$

Evader moves (4Neighborship), Guards will be placed

Example Applet! Enclosing the Evader first!
Lemma 2: Catching an evader in a grid world by setting $k = 1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_i blocked cells in D_{i+1}, D_{i+2}, \ldots
$B_i \subseteq D_i$ burning cells in D_i
Lemma 2: Catching an evader in a grid world by setting $k = 1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_l blocked cells in D_{l+1}, D_{l+2}, \ldots

$B_l \subseteq D_l$ burning cells in D_l
Lemma 2: Catching an evader in a grid world by setting $k = 1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_i blocked cells in D_{i+1}, D_{i+2}, \ldots

$B_i \subseteq D_i$ burning cells in D_i
Lemma 2: Catching an evader in a grid world by setting $k = 1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_i blocked cells in D_{i+1}, D_{i+2}, \ldots

$B_i \subseteq D_i$ burning cells in D_i
Example II: Grid Graph, $k = 1$

Lemma 2: Catching an evader in a grid world by setting $k = 1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_i blocked cells in D_{i+1}, D_{i+2}, \ldots

$B_i \subseteq D_i$ burning cells in D_i
Lemma 2: Catching an evader in a grid world by setting \(k = 1 \) blocking cells after each movement of the evader cannot succeed in general.

Step I: \(r_i \) blocked cells in \(D_{i+1}, D_{i+2}, \ldots \)
\[B_i \subseteq D_i \text{ burning cells in } D_i \]
Lemma 2: Catching an evader in a grid world by setting $k = 1$ blocking cells after each movement of the evader cannot succeed in general.

Step I: r_l blocked cells in D_{l+1}, D_{l+2}, \ldots

$B_l \subseteq D_l$ burning cells in D_l
Lemma 2: Catching an evader in a grid world by setting \(k = 1 \) blocking cells after each movement of the evader cannot succeed in general.

Show \(B_l \geq 1 + r_l \) by induction
Example II: Grid Graph, \(k = 1 \)

Lemma 2: Catching an evader in a grid world by setting \(k = 1 \) blocking cells after each movement of the evader cannot succeed in general.

Show \(B_l \geq 1 + r_l \) by induction

- Ind. base: \(l = 0, \ r_0 = 0 \ \ B_0 = 1 \)
Lemma 2: Catching an evader in a grid world by setting $k = 1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_l \geq 1 + r_l$ by induction

- Ind. base: $l = 0$, $r_0 = 0$, $B_0 = 1$
- Ind. step: Holds for $l \geq 0$, $x \leq r_l$ blocked cells in D_{l+1}
Lemma 2: Catching an evader in a grid world by setting $k = 1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_l \geq 1 + r_l$ by induction

- Ind. base: $l = 0$, $r_0 = 0$ $B_0 = 1$
- Ind. step: Holds for $l \geq 0$, $x \leq r_l$ blocked cells in D_{l+1}
- Move of the evader: $B'_{l+1} = 1 + r_l - x + 1$
Lemma 2: Catching an evader in a grid world by setting \(k = 1 \) blocking cells after each movement of the evader cannot succeed in general.

Show \(B_l \geq 1 + r_l \) by induction

- Ind. base: \(l = 0, \ r_0 = 0 \ B_0 = 1 \)
- Ind. step: Holds for \(l \geq 0, \ x \leq r_l \) blocked cells in \(D_{l+1} \)
- Move of the evader: \(B'_{l+1} = 1 + r_l - x + 1 \)
- Block of the guard in \(D_{l_1}: l_1 \leq l + 1 \)
 \[\Rightarrow r_{l+1} = r_l - x, \ B_{l+1} \geq 1 + r_{l+1} \]
Lemma 2: Catching an evader in a grid world by setting $k = 1$ blocking cells after each movement of the evader cannot succeed in general.

Show $B_l \geq 1 + r_l$ by induction

- Ind. base: $l = 0$, $r_0 = 0$, $B_0 = 1$
- Ind. step: Holds for $l \geq 0$, $x \leq r_l$ blocked cells in D_{l+1}
- Move of the evader: $B'_{l+1} = 1 + r_l - x + 1$
- Block of the guard in D_{l_1}: $l_1 \leq l + 1$
 $\Rightarrow r_{l_1} = r_l - x$, $B_{l+1} \geq 1 + r_{l+1}$
- Block of the guard in D_{l_1}: $l_1 > l + 1$
 $\Rightarrow r_{l_1} = r_l - x + 1$, $B_{l+1} \geq 1 + r_{l+1}$
Lemma 3: For $k = 2$ there is a successful enclosement strategy, that encloses the evader after 8 steps. After 9 additional steps, the evader will be found.
Lemma 3: For $k = 2$ there is a successful enclosement strategy, that encloses the evader after 8 steps. After 9 additional steps, the evader will be found.
Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successful strategy encloses an area of at least 18 burning vertices. This bound is tight.
Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successful strategy encloses an area of at least 18 burning vertices. This bound is tight.

- \(L = \{(x, y)| |x| \leq l \text{ and } |y| \leq l\} \) and \(0 \leq t \leq T \)
Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successful strategy encloses an area of at least 18 burning vertices. This bound is tight.

- \(L = \{(x, y) | |x| \leq l \text{ and } |y| \leq l \} \text{ and } 0 \leq t \leq T \)
- \(b_{v,t} = \begin{cases}
1 & \text{vertex } v \in L \text{ burns before or at time } t \\
0 & \text{otherwise}
\end{cases} \)
Example II: Grid Graph, $k = 2$

Firefigthing interpretation! Outside the fire!

Lemma 3: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successful strategy encloses an area of at least 18 burning vertices. This bound is tight.

- $L = \{(x, y) | |x| \leq l \text{ and } |y| \leq l\}$ and $0 \leq t \leq T$
- $b_{v,t} = \begin{cases} 1 & \text{ vertex } v \in L \text{ burns before or at time } t \\ 0 & \text{ otherwise} \end{cases}$
- $d_{v,t} = \begin{cases} 1 & \text{ vertex } v \in L \text{ is defended before or at time } t \\ 0 & \text{ otherwise} \end{cases}$
Example II: Grid Graph, \(k = 2 \)

Firefigthing interpretation! Integer LP for \(l \leq 8, \ T \leq 9 \)

\[
\begin{align*}
\text{Min} \quad & \sum_{v \in L} b_{v,T} \\
 b_{v,t} + d_{v,t} - b_{w,t-1} & \geq 0 \quad : \ \forall v \in L, v \in N(w), 1 \leq t \leq T \\
 b_{v,t} + d_{v,t} & \leq 1 \quad : \ \forall v \in L, 1 \leq t \leq T \\
 b_{v,t} - b_{v,t-1} & \geq 0 \quad : \ \forall v \in L, 1 \leq t \leq T \\
 d_{v,t} - d_{v,t-1} & \geq 0 \quad : \ \forall v \in L, 1 \leq t \leq T \\
 \sum_{v \in L} (d_{v,t} - d_{v,t-1}) & \geq 2 \quad : \ \forall 1 \leq t \leq T \\
 b_{v,0} & = 1 \quad : \ v \in L \text{ is the origin } (0,0) \\
 b_{v,0} & = 0 \quad : \ v \in L \text{ is not the origin } (0,0) \\
 d_{v,0} & = 0 \quad : \ \forall v \in L \\
 d_{v,t}, b_{v,t} & \in \{0,1\} \quad : \ \forall v \in L, 1 \leq t \leq T
\end{align*}
\]
Example II: Grid Graph, $k = 2$

Lemma 4: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successful strategy encloses an area of at least 18 burning vertices. This bound is tight.

Optimal solution by LP solver:
Example II: Grid Graph, $k = 2$

Lemma 4: For the outbreak of a fire on a single source in a grid and the usage of two firefighters per time step any successful strategy encloses an area of at least 18 burning vertices. This bound is tight.

Optimal solution by LP solver:
Example III: Continuous Firefigthing

Geometric Firefigther Problem

Instance: A circle with center C of radius A that grows with unit speed. An agent who builds a firebreak with speed $v > 1$

Output: Compute a strategy that finally fully enclose the spreading fire.
Example III: Continuous Firefigthing

Geometric Firefigther Problem

Instance: A circle with center C of radius A that grows with unit speed. An agent who builds a firebreak with speed $v > 1$

Output: Compute a strategy that finally fully enclose the spreading fire.

A circular strategy!
Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefighter is larger than 2π.

Proof:
Example III: Continuous Firefigthing

Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefigther is larger than 2π.

Proof:

- Choose $p = (A + x, 0)$ away from the fire
Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefigther is larger than 2π.

Proof:
- Choose $p = (A + x, 0)$ away from the fire
- Loop around origin: $\frac{2\pi(A+x)}{v}$ time
Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefighter is larger than 2π.

Proof:

- Choose $p = (A + x, 0)$ away from the fire
- Loop around origin: $\frac{2\pi(A+x)}{v}$ time
- Circle expands $\frac{2\pi(A+x)}{v}$, smaller than x?
Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefighter is larger than 2π.

Proof:

- Choose $p = (A + x, 0)$ away from the fire
- Loop around origin: $\frac{2\pi(A+x)}{v}$ time
- Circle expands $\frac{2\pi(A+x)}{v}$, smaller than x?
- Equivalent to $\frac{2\pi A}{x} + 2\pi \leq v$
Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed ν of the firefighter is larger than 2π.

Proof:

- Choose $p = (A + x, 0)$ away from the fire
- Loop around origin: $\frac{2\pi(A+x)}{\nu}$ time
- Circle expands $\frac{2\pi(A+x)}{\nu}$, smaller than x?
- Equivalent to $\frac{2\pi A}{x} + 2\pi \leq \nu$
- If and only if $\nu > 2\pi$
Lemma 5: Enclosing a fire of extension A with a single circular loop around the source of the fire is possible, if and only if the speed v of the firefighter is larger than 2π.

Proof:

- Choose $p = (A + x, 0)$ away from the fire
- Loop around origin: $\frac{2\pi(A+x)}{v}$ time
- Circle expands $\frac{2\pi(A+x)}{v}$, smaller than x?
- Equivalent to $\frac{2\pi A}{x} + 2\pi \leq v$
- If and only if $v > 2\pi$

GeoGebra Simulation
Example IV: Firefigthing Grid-World Simulation

Discrete Firefigther Problem

Instance: Grid contamination of size B, spreads 4Neighborship after n time steps. Agent cleans a cell, builds a wall cell and leaves the cell within b time steps.

Output: Compute a strategy that finally fully enclose the spreading fire.

Example: $n = 30$, $b = 5$, $B = 3 \times 3$
Example IV: Firefigthing Grid-World Simulation

Discrete Firefigther Problem

Instance: Grid contamination of size B, spreads 4Neighborship after n time steps. Agent cleans a cell, builds a wall cell and leaves the cell within b time steps.

Output: Compute a strategy that finally fully enclose the spreading fire.

Example: $n = 30$, $b = 5$, $B = 3 \times 3$
Example IV: Firefigthing Grid-World Simulation

Discrete Firefigther Problem

Instance: Grid contamination of size B, spreads 4Neighborship after n time steps. Agent cleans a cell, builds a wall cell and leaves the cell within b time steps.

Output: Compute a strategy that finally fully enclose the spreading fire.
Conjecture 1: For a grid fire that spreads after n time steps and an agent that builds a wall within b time steps, the spiral strategy only succeeds if $b < \frac{n-1}{2}$ holds.

By simulation!