Discrete and Computational Geometry, WS1516
Exercise Sheet “1”: Geometry Duality and Finding the Minimum
University of Bonn, Department of Computer Science I

• Written solutions have to be prepared until Wednesday 4th of November, 12:00 pm.
• There is a letterbox in front of Room E.01 in the LBH building.
• You may work in groups of at most two participants.

Exercise 1: Geometry Duality II (4 Points)
We define a geometry duality $\Psi(\cdot)$ as follows (O denotes the origin)

• For a point $p = (a, b) \in \mathbb{R}^2 \setminus O$, $\Psi(p)$ maps to the line $ax + by = 1$.
• For a line $L : ax + by = 1$, $\Psi(L)$ maps to the point (a, b).

Please prove the following.

For a point $p \in \mathbb{R}^2 \setminus O$ and a line L that does not pass through O, p and O are located in the same side of L if and only if $\Psi(L)$ and O are located in the same side of $\Psi(p)$.

Exercise 2: Geometry Duality II (4 Points)
We define a geometry duality $\Phi(\cdot)$ as follows

• For a point $p = (a, b) \in \mathbb{R}^2$, $\Phi(p)$ maps to the line $y = ax - b$.
• For a line $L : y = ax - b$, $\Phi(L)$ maps to the point (a, b).
Please prove the following.

For a point \(p \in \mathbb{R}^2 \) and a nonvertical line \(L \), \(p \) lies above \(L \) if and only if \(\Phi(L) \) lies above \(\Phi(p) \).

Exercise 3: Finding the Minimum (4 Points)

Given \(r \) distinct numbers, let \((a_1, a_2, \ldots, a_r)\) be a random permutation of the \(r \) numbers. For \(i > 1 \), Let \(A_i \) be the event that \(a_i \) is smaller than all numbers in \(\{a_1, \ldots, a_{i-1}\} \). Please answer the following two questions.

- What is the probability \(\text{Prob}(A_i) \) of event \(A_i \)?
- What is the value of \(\sum_{i=2}^{r} \text{Prob}(A_i) \)?