A convex polytope is a convex hull of finite points in \mathbb{R}^d

- bounded convex polyhedron

Central Geometric Duality D_0

For a point $a \in \mathbb{R}^d \setminus \{0\}$, it assigns the hyperplane

$$D_0(a) = \{ x \in \mathbb{R}^d \mid \langle a, x \rangle = 1 \},$$

and for a hyperplane h not passing through the origin, where $h = \{ x \in \mathbb{R}^d \mid \langle a, x \rangle = 1 \}$, it assigns the points $D_0(h) = a \in \mathbb{R}^d \setminus \{0\}$.

![Diagram of Central Geometric Duality D_0](image)
An interpretation of duality through \mathbb{R}^{d+1}

- “Primal” \mathbb{R}^d: the hyperplane $\pi = \{x \in \mathbb{R}^{d+1} \mid x_{d+1} = 1\}$
- “dual” \mathbb{R}^d: the hyperplane $\rho = \{x \in \mathbb{R}^{d+1} \mid x_{d+1} = -1\}$
- A point $a \in \pi$
 - construct the hyperplane in \mathbb{R}^{d+1} perpendicular to $0a$ and containing 0
 - intersect the hyperplane with ρ

k-flat is a hyperplane in $(k+1)$ dimensions.
- 0-flat is a point, 1-flat is a line, 2-flat is a plane, and so on.
- The dual of a k-flat is a $(d-k-1)$-flat.
Half-space
For a hyperplane h not containing the origin, let h^- stand for the closed half-space bounded by h and containing the origin, while h^+ denotes the other closed half-space bounded by h. That is, if $h = \{x \in \mathbb{R}^d \mid \langle a, x \rangle = 1\}$, then $h^- = \{x \in \mathbb{R}^d \mid \langle a, x \rangle \leq 1\}$ and $h^+ = \{x \in \mathbb{R}^d \mid \langle a, x \rangle \geq 1\}$.

Duality preserves incidences
For a point $p \in \mathbb{R}^d \setminus 0$ and a hyperplane h not containing the origin,

- $p \in h$ if and only if $D_0(h) \in D_0(p)$.
- $p \in h^-$ if and only if $D_0(h) \in D_0(p)^-$.
- $p \in h^+$ if and only if $D_0(h) \in D_0(p)^+$.

Dual set (Polar set)
For a set $X \subseteq \mathbb{R}^d$, the set dual to X, denoted by X^*, is defined as follows:

$$X^* = \{y \in \mathbb{R}^d \mid \langle x, y \rangle \leq 1 \text{ for all } x \in X\}.$$

Illustration for the dual set X^*

- Geometrically, X^* is the intersection of all half-spaces of the form $D_0(x)^-$ with $x \in X$.
- In other words, X^* consists of the origin plus all points y such that $X \subseteq D_0(y)^-$.
- For example, if X is the quadrilateral $a_1a_2a_3a_4$ shown above, the X^* is the quadrilateral $v_1v_2v_3v_4$.
- X^* is convex and closed and contains the origin.
- $(X^*)^*$ is the convex hull of $X \cup \{0\}$.
Famous convex polytopes in \mathbb{R}^3

Tetrahedron
- four triangles
- 6 edges
- 4 vertices

Octahedron
- 8 triangles
- 12 edges
- 6 vertices

Dodecahedron
- 12 pentagon
- 30 edges
- 20 vertices
Two Types of Convex Polytopes

H-polyhedron/polytope
An H-polyhedron is an intersection of finitely many closed half-spaces in \mathbb{R}^d. An H-polytope if an bounded H-polyhedron.

V-polytope
An V-polytope is the convex hull of a finite point set in \mathbb{R}^d

Theorem
Each V-polytope is an H-polytope, and each H-polytope is a V-polytope.

Mathematically Equivalence, Computational Difference
- Whether a convex polytope is given as a convex hull of a finite point set or as an intersection of half-spaces
- Given a set of n points specifying a V-polytope, how to find its representations as an H-polytope?
- The number of required half-spaces may be astronomically larger than the number n of points

Another Illustration
- Consider the maximization of a given linear function over a given polytope.
- For V-polytopes, it suffices to substitute all points of V into the given linear function and select the maximum of the resulting values
- For H-polytopes, it is equivalent to solving the problem of linear programming.

Dimension of a convex polyhedron P
- Dimension of its affine hull
- Smallest dimension of an Euclidean space containing a congruent copy of P
Cubes

• The d-dimensional cube as a point set of the Cartesian Product $[-1, 1]^d$
• As a V-polytope, the d-dimensional cube is the convex hull of the set $\{-1, 1\}^d$ (2^d points).
• As a H-polytope, it is described by the inequalities $-1 \leq x_i \leq 1$, $i = 1, 2, \ldots, d$, i.e., by the intersection of $2d$ half-spaces
• 2^d points vs. $2d$ half-spaces
• The unit-ball of the maximum norm $\|x\|_\infty = \max_i |x_i|$

![Cubes Diagram]

Crosspolytope

• V-polytope: Convex hull of the “coordinates cross,” i.e., the convex hull of e_1, $-e_1$, e_2, $-e_2$, ..., e_d, and $-e_d$, where e_1, \ldots, e_d are vectors of the standard orthonormal basis. For $d = 2$, $e_1 = (1, 0)$ and $e_2 = (0, 1)$.
• H-polytope: Intersection of 2^d half-spaces of the form $\langle \sigma, \leq \rangle 1$, where σ ranges over all vectors in $\{-1, 1\}^d$.
• $2d$ points vs. 2^d half-spaces
• Unit ball of l_1-norm $\|x\|_1 = \sum_{i=1}^{d} |x_i|$.

![Crosspolytope Diagram]
Simplex

A *simplex* is the convex hull of an affinely independent point set in some \mathbb{R}^d.

- A d-dimensional simplex in \mathbb{R}^d can also be an intersection of $d+1$ half-spaces.
- The polytopes with smallest possible number of vertices (for a given dimension) are simplices.

\[\begin{align*}
 d = 0 & \quad \quad \quad \quad d = 1 \quad \quad \quad \quad d = 2 \quad \quad \quad \quad d = 3 \\
 (0, 0, 1) & \quad (0, 0, 1) \quad (1, 0, 0) \\
\end{align*} \]

A *regular* d-dimensional simplex in \mathbb{R}^d is the convex hull of $d+1$ points with all pairs of points having equal distances.

- Do not have a very nice representation in \mathbb{R}^d
- Simplest representation lives one dimension higher
- The convex hull of the $d+1$ vectors e_1, \ldots, e_{d+1} of the standard orthonormal basis in \mathbb{R}^{d+1} is a d-dimensional regular simplex with side length $\sqrt{2}$.
Proof of equivalence of H-polytope and V-polytope

\Rightarrow (Let P be an H-polytope)

- Assume $d \geq 2$ and let Γ be a finite collection of closed half-spaces in \mathbb{R}^d such that $P = \bigcap \Gamma$ is nonempty and bounded (By the induction, $(d-1)$ is correct)
- For each $\gamma \in \Gamma$, let $F_\gamma = P \cap \partial \gamma$ be the intersection of P with bounding hyperplane of γ.
- Each nonempty F_γ is an H-polytope of dimension of at most $(d-1)$, and it is the convex hull of a finite set $V_\gamma \subset F_\gamma$ (by the inductive hypothesis)
- Claim $P = \text{conv}(V)$, where $V = \bigcup_{\gamma \in \Gamma} V_\gamma$
 - Let $x \in P$ and let l be a line passing through x.
 - The intersection $l \cap P$ is a segment, so let y and z be its endpoints
 - There are $\alpha, \beta \in \Gamma$ such that $y \in F_\alpha$ and $z \in F_\beta$
 - We have $y \in \text{conv}(V_\alpha)$ and $z \in \text{conv}(V_\beta)$.
 - $x \in \text{conv}(V_\alpha \cup V_\beta) \subseteq \text{conv}(V)$

\Leftarrow (Let P be a V-polytope)

- Let $P = \text{conv}(V)$ with V finite and assume 0 is an interior point of P
- Consider the dual body $P^* = \bigcap_{v \in V} D_0(v)^-$
- Since P^* is an H-polytope, P^* is a V-polytope (what we just prove)
 - P^* is the convex hull of a finite point set U
- Since $P = (P^*)^*$, P is the intersection of finitely many half-spaces
 - $P = \bigcap_{u \in U} D_0(u)^-$