Exercise 25: Applying the epsilon net theorem (4 Points)

Consider the set system (X, \mathcal{F}) where $X = [0, 1]^2$ is the unit square and
\[\mathcal{F} = \{ x \cap B_{0,1}(x) \mid x \in X \}. \]
Here, $B_{0,1}(x) := \{ y \mid d(x,y) \leq 0.1 \}$ is a circle of radius 0.1, centered in x. $d(\cdot,\cdot)$ is the Euclidean distance. The measure $\mu(A)$ of set $A \subset X$ equals the area covered by A.

For any value $0 < \varepsilon \leq 0.01\pi$,

a) Use the epsilon net Theorem to obtain an upper bound on the size of an ε net for (X, \mathcal{F}). Check the requirements for applying the epsilon net Theorem, i.e. determine the value $\text{dim}_{\text{VC}}(\mathcal{F})$ and the value of the constant C as in the proof of the epsilon net Theorem in the lecture.

b) Construct an ε net for (X, \mathcal{F}) and compare its size with the value obtained in a).
Exercise 26: Random variables (4 Points)

The variance \(\text{Var}(X) \) of a random variable \(X \) is defined as

\[
\text{Var}(X) := \mathbb{E}((X - \mathbb{E}(X))^2)
\]

where \(\mathbb{E}(\cdot) \) denotes the expected value. Two random variables \(X, Y \), are called \textit{independent}, if for all (measurable) sets, \(A, B \), the equality

\[
P(X \in A \land Y \in B) = P(X \in A) \cdot P(Y \in B)
\]

is fulfilled. They are called \textit{uncorrelated}, if

\[
\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)
\]

holds.

a) Give a simple example of two random variables which are independent, but not uncorrelated.

b) Show that if \(X \) and \(Y \) are independent random variables, which attain finitely many values only, then \(X \) and \(Y \) are also uncorrelated.

c) Prove that if \(X \) and \(Y \) are two uncorrelated random variables, then
\[
\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)
\]
holds.
Exercise 27: Packings and transversals (4 Points)

Let natural numbers $k \leq n$ be given. We consider the basic set $X = \{1, \ldots, n\}$ and the set system

$$\mathcal{F} := \{Y \subseteq X \mid |Y| = k\}.$$

A subset $T \subseteq X$ is called a transversal of \mathcal{F} if it intersects all the (non-empty) sets of \mathcal{F}. The transversal number, denoted by $\tau(\mathcal{F})$, is the smallest possible cardinality of a transversal of \mathcal{F}. The packing number of \mathcal{F}, denoted by $\nu(\mathcal{F})$, is the maximum cardinality of a system of pairwise disjoint sets in \mathcal{F}.

$$\nu(\mathcal{F}) = \sup \{|M| : M \subseteq \mathcal{F}, M_1 \cap M_2 = \emptyset \text{ for all } M_1, M_2 \in M, M_1 \neq M_2\}$$

For a finite set X, as in this exercise, we define a fractional transversal for \mathcal{F} to be a function $\phi : X \mapsto [0, 1]$ such that for each $S \in \mathcal{F}$, we have $\sum_{x \in S} \phi(x) \geq 1$. The size of a fractional transversal ϕ is $\sum_{x \in X} \phi(x)$, and the fractional transversal number $\tau^*(\mathcal{F})$ is the infimum of the sizes of fractional transversals. A fractional packing for \mathcal{F} is a function $\psi : \mathcal{F} \mapsto [0, 1]$ where for each $x \in X$, we have $\sum_{S \in \mathcal{F}, x \in S} \psi(S) \leq 1$. The size of a fractional packing ψ is $\sum_{S \in \mathcal{F}} \psi(S)$, and the fractional packing number $\nu^*(\mathcal{F})$ is the supremum of the sizes of all fractional packings for \mathcal{F}.

For the given base set X and set system \mathcal{F}, determine the transversal number $\tau(\mathcal{F})$, the packing number $\nu(\mathcal{F})$, and their fractional variants $\tau^*(\mathcal{F})$ and $\nu^*(\mathcal{F})$.