Discrete and Computational Geometry, SS 18 Exercise Sheet " 5 ": WSPD Application University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Thursday 7th of June.
- You may work in groups of at most two participants.
- You can hand over your work to our tutor Raoul Nicolodi in the beginning of the lecture.

Exercise 13: MST from WSPD?

(4 Points)
Prove or disprove the following statement:
For a WSPD of a point set S for $s>4$ in dimension d consider any pair $\left\{A_{i}, B_{i}\right\}$ and build the shortest edge $\overline{a_{i} b_{i}}$ with $a_{i} \in A_{i}, b_{i} \in B_{i}$. The given collection of edges will result in the Minimum-Spanning-Tree of the point set S, i.e., the edge-length minimal tree that connects all points in S.

Exercise 14: Packing argumentation

(4 Points)
Consider two reals l and L such that $0<l \leq L \leq 1$.
How many disjoint axis-parallel boxes $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \ldots \times\left[a_{d}, b_{d}\right]$, with $\min _{i}\left|b_{i}-a_{i}\right| \geq l$ and $\max _{i}\left|b_{i}-a_{i}\right| \leq L$ can intersect with the hypercube $[0,1]^{d}$?
Give a proof for a non-trivial (reasonably small) upper bound depending on l, L und d !

Exercise 15: Nearest neigbors by WSPD

Construct the WSPD for $s=3$ and the set $S=\{0,4,5,7,12,13,14,16\}$ in \mathbb{R}^{1} by making use of a single split tree.
Compute the 3 nearest neighbors for any point by the strategy presented in the lecture.

