Exercise 7: Proof details Two-Squares-Theorem (4 Points)

1. For \(p = 17 \), present the corresponding values of \(q, a \) and \(b, i \) and \(j \) in the proof of the Two-Squares-Theorem (Theorem 11). Finally \(p = a^2 + b^2 \) for \(a, b \in \mathbb{Z} \) has to be fulfilled.

2. Prove the following statement: For the factor ring \(\mathbb{Z}_p \) for a prime \(p \) only \(a = \bar{a} \) and \(a = -\bar{a} \) gives a solution for \(a^2 = \bar{a} \).
 (You can make use of the following statement: \(p|ab \Rightarrow p|a \) or \(p|b \).)
Exercise 8: Minkowskis Theorem (4 Points)

- Present an argument that the Minkowski Theorem (Theorem 7) actually says that 2 lattice points different from the origin will be inside the set C.

- Argue that the boundedness of the set C is not a necessary condition of Theorem 7. Give an example for an unbounded set C that fulfills the conditions of Theorem 7 for \mathbb{R}^2.

Exercise 9: Application of Minkowskis Theorem (4 Points)
Consider the regular (5×5) lattice around the origin. Calculate the required expansion (radius r) of the trees at the lattice points so that any line $Y = aX$ hits at least one of the trees. Do the calculation in the following ways:

1. Calculate the radius r directly and precisely by considering the corresponding circles and lines.
 (W.l.o.g. only two cases have to be considered!)

2. Make use of the Minkowski Theorem and compute a non-trivial radius r that fulfills the requirement.

Figure 1: The regular (5×5) grid. The line passes the circles.