Good query performance with high probability

Up to now:

Fixed input set S_n, $n \approx (S_n)$, expected MAP

n possible query structures $D_{n}(S_n)$ for any parameter n

Any $|D_{n}(S_n)|$ between $O(n)$ and $O(n^2)$

Query cost between $O(\log n)$ and $O(n)$

- Array size is $O(n)$
- For fixed query point q, array query cost $O(\log n)$

- Array height of $D_{n}(S_n)$ (in any structure a key point?)
- How many $D_{n}(S_n)$ form reasonable query? (for any query point)
- Worst case query time? (Construction of reasonable $D_{n}(S_n)$?)

Use: Markov Inequality

$Z \geq 0$ random variable, $\alpha > 0$

$$P(Z \geq \alpha) \leq \frac{E(Z)}{\alpha}$$

Modelling with independent random variables
Construct graph that represent all invalid orders for $S_1, S_2, S_3, S_4, \ldots, S_4$.

For any fixed invalid order, there is exactly one path π. For example, $3, 2, 4, 1$. How many paths?
fixed query point \(q \)

main edge if insertion of \(5 \) days

the current trapezoid tool contains \(q \)

Max 4 edge segments define the current trapezoid \(T \)

Backward analysis: At most 4 segments
day the trapezoid if they are removed from a subset.

\(\Rightarrow \) Any vertex has \(\leq 4 \) marked edges from below

Now: If less than 4, simply mark some other arbitrarily.

(First three layers, note all!) Forget the case of the marks.

Analyze expected number of steps during which the
trapezoid containing \(q \) changes.

Expected number of marked edges on a source to sink path
is 6.

Random variable (choose one of the \(n \) paths)

\[X_i = \begin{cases} 1 & \text{i-th edge is marked (root)} \\ 0 & \text{otherwise} \end{cases} \]

\(\text{No. independent mark at level } \) does not influence
mark at level \(g \) (random ports, top down? probability to hit one of the 4 segments)
2. \[P \left[x_i = 1 \right] = \sum_{i=1}^{4} \frac{1}{i} \quad i \geq 3 \]

Probability that node of the form \(v \) is not hit by one of the four seques

3. \[Y := \sum_{i=1}^{n} x_i \]

\(Y \) is the expected number of nodes in the second part of the path to \(q \)

\(Y \) is equal to the product of the height of the tree \(h \) and \(n \)

\[\sum_{i=1}^{n} x_i = n \times h \]

\(h \) is the height of the tree

Probability that path has more than \(2n \) height

\[P \left[Y \geq 2 \ln(n+1) \right] = P \left[e^{Y} \geq (n+1)^{2t} \right] \]

\(t > 0, \forall t \)

\[P \left[\text{length searchtree to } q \geq 3 \times \ln(n+1) \right] \leq \frac{E(e^{Y})}{(n+1)^{2t}} \]

\(E(e^{Y}) = n+1 \)

\(t = \frac{\ln \frac{3}{4}}{\ln(n+1)} \)
\[E(e^{tY}) = E\left(p + \sum_{i=1}^{n} x_i \right) \]
\[= E\left(\prod_{i=1}^{n} e^{t x_i} \right) \]
\[= \prod_{i=1}^{n} E\left(e^{t x_i}\right) \quad \text{due to independence} \]
\[= \prod_{i=1}^{n} e^{t \cdot \frac{y_i}{\lambda} + \epsilon \left(\frac{1}{\lambda} - \frac{y_i}{\lambda}\right)} \]
\[= \prod_{i=1}^{n} \frac{e^{t \cdot \frac{y_i}{\lambda}}}{\lambda} \]
\[\Rightarrow \]
\[E(x_i) = \lambda \frac{y_i}{\lambda} + 0 \cdot \left(\lambda - \frac{y_i}{\lambda} \right) \]
\[= \prod_{i=1}^{n} \frac{y_i}{\lambda} \frac{1}{\lambda} + \frac{1-y_i}{\lambda} \]
\[= \prod_{i=1}^{n} \frac{2}{\lambda} \frac{3}{2} \cdots \frac{n+1}{n} \]
\[= n! \lambda \]
Lemma 50: Let S be a set of n non-crossing line segments, let q be a query point and k be a parameter $k > 0$. The probability that the second path for q in $D(s)$ (random incremental construction) has more than $32 \ln(n+1)$ steps is at most $\frac{1}{(n+1)^2 \ln \frac{3}{4} - 1}$.

Proof: Illustrated.

Stated for single second path?

Maximum length of a second path k?

Height of $D_k(s)$?

Problem too many query points?

Collect points with the same second path in D_k?

Sub/strip method: vehicle lives through return
intersected by line segments
at most $2(n+1)^2$ cells
For any cell the second path is the same
for all points in the cell.
\[P \left[\text{height}(D_n(S_n)) \geq 32 \ln(n+1) \right] \]
\[\leq P \left[\text{one of the } (2n+1)^2 \text{ search paths has height } \geq 32 \ln(n+1) \right] \]
\[\leq 2(n+1)^2 P \left[\text{fixed search path has height } \geq 32 \ln(n+1) \right] \]
\[\leq \frac{2(n+1)^2}{(n+1)2^{\ln \frac{5}{4}} - 1} = 2 \frac{1}{(n+1)2 \ln \frac{5}{4} - 3} \]

Lemma 50

Lemma 51 Same preconditions as in Lemma 50.

The probability that the maximum couple of a search path in \(D(S_n) \) (random walk) has a height greater than 32 \(\ln(n) \) is at most

\[\frac{2}{(n+1)2 \ln \frac{5}{4} - 3} \]

Proof: Just given.

Consequence: Choose \(z = 20 \)

\[\ln \frac{5}{4} \approx 0.223 \]

\[\Rightarrow P \left[\text{height} \left(D(S_n) \right) \geq 60 \ln(n+1) \right] \leq \frac{2}{(n+1)1.4} < \frac{1}{4} \]

For \(n > 4 \).
\[
\Rightarrow \quad P\left[\text{height } (D_{\mathcal{S}_n}) \leq 60 \ln(1 + t) \right] \geq \frac{3}{4}
\]

Similar arguments:

\[
\Rightarrow P\left[\text{size } (D_{\mathcal{S}_n}) \leq 2n \right] \geq \frac{3}{4}
\]

\[
\Rightarrow P\left[\text{construction cost } (D_{\mathcal{S}_n}) \leq 2n \log n \right] \geq \frac{3}{4} \quad \Rightarrow \quad \frac{3}{4} > \frac{1}{2}
\]

(max legit ad search path)

(max size)

Similar arguments also:

\[
\Rightarrow P\left[\text{cost, cost } (D_{\mathcal{S}_n}) \leq 2n \log n \right] \geq \frac{3}{4}
\]

\[
\text{Theorem 5.2: } S \text{ plane subdivision of } n \text{ edges.}
\]

There exists a point location data structure for \(S \) of size \(\bigOmega(n) \) with \(\bigO(n \log n) \) query time. Can be computed in \(\bigO(n \log n) \) expected time.

\[
\text{Proof: Build }
\]

\[
\text{Choose random permutation of } \mathcal{S}_n \\
\text{Build: } D_{\mathcal{S}_n} \\
\text{If choice is bad, start again!}
\]

In the average 4 attempts are enough.