Computing a smallest transversal can be difficult.

Example 1:

\[R = \text{finite set of (axis-parallel) rectangles in } \mathbb{R}^2 \]

\[P = \text{finite set of points} \]

Problem: Find minimal subset \(P_{\text{min}} \subseteq P \) so that any \(r \in R \) contains a point in \(P_{\text{min}} \).

NP-complete (also for axis-parallel lines \(v \))

Try: \(X = P, \quad T = \{ P \cap r \mid r \in R \} \)

Example 2:

\[R = \text{finite sets of intervals along } X\text{-axis} \]

\[P = \text{finite set of points} \]

Problem: Find minimal subset \(P_{\text{min}} \subseteq P \) so that any \(r \in R \) contains at least one point.
Does always \(\nu(t) = \tilde{\tau}(t) \) hold?

No, example \(\nu < \tau \)

\[X = \mathbb{R}^2, \quad \tilde{\tau} = \sum_{n} \text{lines in general position} \]

\[\nu(t) = 1 \]

\[\tilde{\tau}(t) = \left(\frac{n^2}{2} \right) \]

\((\nu > \tau \text{ not in general})\)

Proposition: \(\nu(t) \leq \tilde{\tau}(t) \)

Proof: For \(m \) disjoint sets of \(\tilde{\tau} \) at least \(m \) stabbing points are necessary.

Relaxation of the transversal \(\Rightarrow \) \&-net

Large sets should be easier hit by a transversal than small ones!
Simple, special case X is finite.

Size of a set by cardinality.

Definition 48 (ε-net, special case)

Let (X, τ) be a set system on $\varepsilon \in [0, 1]$ a real number. A set $N \subseteq X$ (not necessarily $N \subseteq \tau$) is called an ε-net for (X, τ) if $N \cap S \neq \emptyset$ for all $S \in \tau$ with $|S| \geq \varepsilon |X|$.

- ε-net is transversal for all sets larger than $\varepsilon |X|$

- Convenient to write $\varepsilon = \frac{1}{r}$ for $r > 1$ \(r \in \mathbb{R} \).

- Epsilon net theorem \(\Rightarrow \) condition on τ:
 - existence of $\frac{1}{r}$ nets of size $O(r \log r)$

- Art gallery: all polygons you can see from two \(\frac{1}{r} \) vol(P) of
 - # guards is $O(r \log r)$.

\(X = P \) not finite

General definition, μ a probability measure.

In most cases μ is volume

or μ gives cardinality V.

\(({}^{\text{Pint, sub}}) \)
$P \text{ polytope:}$

$$M(P) = 1 \quad M(\text{vis}_P(p)) = \frac{\text{vol}(\text{vis}_P(p))}{\text{vol}(P)} \quad \forall \varepsilon = \frac{1}{p}$$

Definition 4.3 (ε-net)

$N \subseteq X$ is called ε-net for (X, \mathcal{T})

$$\iff \forall F \in \mathcal{T} \quad (M(F) \geq \varepsilon \implies F \cap N \neq \emptyset).$$

In other words: N is a transversal of a sub system of \mathcal{T} with sufficiently large sets.

Fits to our and Galley question: $M(\text{vis}_P(p)) \geq \frac{1}{p} M(P)$

$\forall p \in P$

Seeking for sufficient conditions for the existence of finite (small) ε-nets. VC-dim

Example 1

$X = \text{unit square} \quad \mathcal{G} = \{0, 1\}^2$

$\mathcal{T} = \{ \mathcal{F} \subseteq \mathcal{G} \text{ area of single poly} \}$

No finite ε-net exists.

Assume finite net \mathcal{N} with

Fails on always polytope volume arbitrarily close to 1 but do not contain the net point.
Example 2 \(X = \mathbb{Q} \) unit square

\[\mathcal{T} = \{ F \subset \mathbb{Q} \text{ square} \} \]

For all \(\varepsilon > 0 \) there is a point \(c \)-net (depending on \(\varepsilon \))

Grid with distance \(\delta \)

\(\varepsilon \)-net for \((x, y) \) with \(\varepsilon = 2\delta^2 \)

Unit square partitioned between grid points

Maximal size

Rectangle \(\sqrt{2} \cdot d \) side length.

Theorem 44 (\(\varepsilon \)-net theorem): Let \((X, \mathcal{F}) \) be

a set system with measure \(\mu \) let \(\text{dim}_{\text{VC}}(\mathcal{F}) = d < \infty \).

For \(r > 2 \) there is an \(\varepsilon \)-net for \(\mathcal{T} \) with

size at most \(C \cdot d \cdot r^d \), where \(C \) is an independent constant.

Bound on \(C \): Fundamental lemma bounding

the number of distinct sets in a system of given VC dimension.
Definition

Let \((X, \mathcal{F})\) be a set system \(\mathcal{T} \subseteq \mathcal{P}(X)\)

\[
\bar{N}_\mathcal{F}(m) := \max_{\substack{\mathcal{T} \subseteq \mathcal{P}(X) \\
Y \subseteq X \\
|Y| = m}} |\mathcal{T} \cap Y|
\]

is denoted as the \textit{shackle function} of \((X, \mathcal{F})\).

\(\bar{N}_\mathcal{F}(m)\) maximum possible number of distinct
intersections of the sets \(\mathcal{T}\) with an \(m\)-point subset \(Y \subseteq \mathcal{T}\) is not required, and also that \(Y\) is fully shelled.

\[
\mathcal{T} \cap Y = \{ E \cap Y | E \in \mathcal{T} \}
\]

Relationship between \(\bar{N}_\mathcal{F}(m)\) and \(\text{dim}_{\text{VC}}(\mathcal{F})\)

\textbf{Claim} \quad \text{dim}_{\text{VC}}(\mathcal{F}) = 0 \quad \Leftrightarrow \quad \forall m \quad \bar{N}_\mathcal{F}(m) = 2^m

(any subset intersected with different sets)

\(\leq\) any \(m\) set is fully shelled \(\Rightarrow\) \text{dim}_{\text{VC}}(\mathcal{F}) = 0 \Rightarrow \bar{N}_\mathcal{F}(m) = 2^m

\(\Rightarrow\) \(\exists t \leq m \quad |\mathcal{T}| = 2^m \quad \text{exists} \quad \text{dim}_{\text{VC}}(\mathcal{F}) = 0\)

Set \(A \subseteq B \quad |A| = m \quad |A| = m \quad |B| = 2^m \quad \Rightarrow \quad \bar{N}_\mathcal{F}(m) = 2^m \quad \text{for all } m.\)
Lemma 46, (Shelah Frodon Lemma) \(\times \) finite

(i) Let \(|X| = m\) and \(\dim_{VC}(\mathcal{F}) \leq d\).

Then \(\mathcal{F}\) consists of at most

\[
\binom{m}{0} + \binom{m}{1} + \cdots + \binom{m}{d}
\]

subsets of \(X\).

(ii) For \(\dim_{VC}(\mathcal{F}) \leq d\)

\[
\overline{t}_{\mathcal{F}}(m) \leq \binom{m}{0} + \binom{m}{1} + \cdots + \binom{m}{d}.
\]

(iii) \(\binom{m}{0} + \binom{m}{1} + \cdots + \binom{m}{d} \leq \left(\frac{e}{e-d}\right)^d e^{O(m^d)}\)

Proof:

(\(\forall, n\)) \((X, \mathcal{F})\) and \(X' \subseteq X\)

\[
\Rightarrow \dim_{VC}(\mathcal{F} | X') \leq \dim_{VC}(\mathcal{F})
\]

Let \(C \subseteq X'\); assume \(C\) is shattered by \(\mathcal{F} | X'\)

\[
\Rightarrow \forall B \subseteq C \exists F' \in \mathcal{F} \text{ such that } B = C \cap F'
\]

\[
\Rightarrow \forall B \subseteq C \exists F \in \mathcal{F} \quad B = C \cap (F \cap X') \subseteq C \cap \mathcal{F}
\]

\[
\Rightarrow C \text{ is shattered by } \mathcal{F}
\]
Part (i). Induction on \(d \), nested induction on \(m \)

\[d \leq m \text{ clear no more than } |X| \text{ elements.} \]

Ind. base \(d = 0 \) arbitrary \(m \)

\[\dim_{vc}(\varnothing) = 0 \implies \text{no set of one element is shattered} \]

\[\Rightarrow a \in X, \exists \varnothing, \exists a \varnothing \subseteq \varnothing \varnothing \]

\[\text{either no } F \subseteq \varnothing \text{ or } F \cup \varnothing \subseteq \varnothing \varnothing \text{ or } F \varnothing \subseteq \varnothing \varnothing \checkmark \]

\[\Rightarrow F \varnothing \subseteq \varnothing \varnothing \Rightarrow \forall F \forall a \Rightarrow F = \varnothing \varnothing \]

\[\Rightarrow |\varnothing| = 1 = \binom{m}{0} = \binom{m}{d} \]

Ind. step \(d \geq 1 \) (also \(m \geq 1 \)) let \(a \in X \)

\[X_1 = X \setminus \{a\} \quad \varnothing_1 = \varnothing \setminus \{a\} \Rightarrow \{F \cap X_1 \mid \varnothing \subseteq F \subseteq \varnothing_1\} \]

\[\dim_{vc}(\varnothing_1) \leq \dim_{vc}(\varnothing) \leq d \]

Induction on \(m \)

\[|\varnothing_1| \leq \binom{m-1}{0} + \binom{m-1}{1} + \cdots + \binom{m-1}{d} \]

How many sets can \(\varnothing \) have more than \(\varnothing_1 \)?

Consider the mapping

\[f : \varnothing \rightarrow \varnothing_1 \]

\[A \rightarrow A \cup \{a\} \]
We have

\[p(A_1) = p(A_2) \quad \iff \quad A_2 = A_1 \cup \exists a? \]

or

\[A_1 = A_2 \cup \exists a? \]

Let \(\tilde{t}_2 = \{ \alpha \in T \mid \alpha \notin A \text{ and } A \cup \exists a? \in T \} \) set syst on \(X_4 \).

For some element of \(A_1, A_2 \) with the smallest number of elements

\[|\tilde{t}_1| = |\tilde{t}_1| + |\tilde{t}_2| \]

because

\[|\tilde{t}_2| \text{ numb of set with } a^* \text{ or wknod } a^* \quad (\text{ has counterpart}) \]

plus

\[|\tilde{t}_1| \text{ counterparts to } \tilde{t}_2 \text{ with } a \in A' \]

and sets in \(T \) with \(F \cap X_4 = F \).

Claim:

\[\dim \psi (\tilde{t}_2) \leq d-1 \quad \text{set syst on } X_4 \]

Proof: Show: \(\forall A \subseteq X_4 \) A shald by \(\tilde{t}_2 \Rightarrow A \cup \exists a? \)

Shald by \(\tilde{t} \)

If this is true we have

\[|A| \leq |A|_{\tilde{t}} = |A \cup \exists a?| \leq \dim \psi (\tilde{t}) \leq d \]

\[\implies |A| \leq d-1 \]

Now let \(A \subseteq X_4, B \subseteq A \cup \exists a? \)

Case 1. \(a \notin B \):

\(B \subseteq A \Rightarrow \exists F \in \tilde{t}_2 \text{ with } F \cap A = B \)

(Ash by \(\tilde{t}_2 \))

\[\implies F \cap A \cup \exists a? = B \]
\(f_n = x_1 \times \sum x \)

\(x_1 = x \times \sum x \) \quad \{x, |x| \leq m \text{ and } \text{np} \}

\(f_2 = \left\{ A \in T \mid A \cap A \text{ and } A \cup x \in T \right\} \)

\(T = \left[f_1 \right] + [f_2] \quad \text{and} \quad \omega_{C_1}(T) \leq \alpha \cdot n \text{ w.r.t. np} \)