Online Motion Planning MA-INF 1314
Smart DFS

Elmar Langetepe
University of Bonn
Repetition!

- SmartDFS: DFS returnpath and components
- Simple design, complicated analysis: $C + \frac{1}{2}E - 3$
- Structural property: l-Offset, l-Layer
- Edgelemma: l-Offset 8l edges less
- Pathlemma: Shortest path $\leq \frac{1}{2}E(P) - 2$
- Induction: Decompose at splitcell!
- Excesslemma: $\text{excess}(P) \leq \text{excess}(P_1) + \text{excess}(K_2 \cup \{c\}) + 1$
- Induction over number of splitcells
Definition P_1, P_2 and ExcessLemma!

- Splitcell $c \in K_2 \cup \{c\}$ first!
- P_2 q-Offset of $K_2 \cup \{c\}$ $q = l = 1$, then $P_1 := ((P \setminus P_2) \cup Q) \cap P$!
- $\text{excess}(P) \leq \text{excess}(P_1) + \text{excess}(K_2 \cup \{c\}) + 1$
Repetition: Edges of P und Q

Lemma: P, P_1, P_2 und Q as given. For the number of edges we have $E(P_1) + E(P_2) = E(P) + E(Q)$.

![Diagram showing the edges and layers of P and Q.]
Repetition: Exploration Theorem

Theorem: SmartDFS explores a simple gridpolygon P with C cells and E boundary edges with at most $C + \frac{1}{2}E - 3$ steps.

Proof: Induction over number of components

- **Induction base:** One component
- Visit cells: $C - 1$, back to start
- Shortest path Lem: $\frac{1}{2}E(P) - 2 + C - 1 = C + \frac{1}{2}E - 3$
- And so on by induction!
Repetition! Wavefront and competitive ratio

- Wavefront Algorithmu (Lee): $O(n)$, n cells
- Comp. Factor: $S(P) \leq \frac{4}{3} C(P) - 2$ (Lower bound $\frac{7}{6}$)
- Observation: Optimally in narrow passages!
Repetition

- Analyse polygons P_i, $i = 1, \ldots, k$
- Induction over split-cells
- Induction-Base: No split-cell in layer 1.
- **Lemma** $E(P) \leq \frac{2}{3}C(P) + 6$ backward analysis
- **Lemma** $S(P) \leq C(P) + \frac{1}{2}E(P) - 5$, two steps less by Offsetlemma!
- Kombination gives Induction-Base!
Theorem: SmartDFS is $\frac{4}{3}$ competitive

- Narrow passages optimal, sequence of P_i independently!
- Only cells and steps, no edges!!
- Induction in P_i over split-cell number! $S(P_i) \leq \frac{4}{3} C(P_i) - 2$
- Induction base: Use special lemmata!
Induction base: \(S(P_i) \leq \frac{4}{3}C(P_i) - 2 \)

- \(P_i \) no split-cell means, no split-cell in Layer 1
- Apply case-sensitive Lemma: \(C(P) + \frac{1}{2}E(P) - 5 \)
- Apply structural Lemma: \(E(P) \leq \frac{2}{3}C(P) + 6 \)

\[
S(P_i) \leq C(P_i) + \frac{1}{2}E(P_i) - 5 \\
\leq C(P_i) + \frac{1}{2} \left(\frac{2}{3}C(P_i) + 6 \right) - 5 \\
= \frac{4}{3}C(P_i) - 2
\]
Induction step: \(S(P_i) \leq \frac{4}{3} C(P_i) - 2 \)

- Split-cell in first layer of \(P_i \), otherwise done: Two Cases
- Split by \(c \) adjacent to some \(c' \)
- Typ (I) (curr. layer not) or Typ (II) (curr. layer fully.) component
- Split into \(P' \) and \(P'' \) with Rectangle/Square \(Q \)
- Case (i): \(Q = c \), otherwise \(Q \) smallest rectangle around \(c,c' \)
Case (i): \(S(P_i) \leq \frac{4}{3} C(P_i) - 2 \)

- \(S(P_i) = S(P') + S(P'') \) (Gate) \(C(P_i) = C(P') + C(P'') - 1 \)
- Induction: For \(P' \) and \(P'' \) (less split-cells)

\[
S(P_i) = S(P') + S(P'') \leq \frac{4}{3} C(P') - 2 + \frac{4}{3} C(P'') - 2 \\
\leq \frac{4}{3} C(P_i) + \frac{4}{3} - 4 < \frac{4}{3} C(P_i) - 2
\]
Case (ii),(iii): \(S(P_i) \leq \frac{4}{3} C(P_i) - 2 \)

- \(|Q| = 4\) but save 4 steps!
- \(P', P''\) separately (I.H.) but
- Path in \(P_i\) from \(c'\) to \(c\) or from \(c\) to \(c'\) done in \(P', P''\)
- Save at least \(4=|Q|\) steps, two cells considered twice!
Case (ii), (iii): \(S(P_i) \leq \frac{4}{3} C(P_i) - 2 \)

- At least \(4 = |Q| \) steps less, two cells argument
- \(S(P_i) = S(P') + S(P'') - 4 \) and \(C(P_i) = C(P') + C(P'') - 4 \)
- Apply I.H. for \(P' \) and \(P'' \)

\[
S(P_i) = S(P') + S(P'') - 4 \leq \frac{4}{3} C(P') + \frac{4}{3} C(P'') - 8 \\
\leq \frac{4}{3} \left(C(P') + C(P'') - 4 \right) - \frac{8}{3} < \frac{4}{3} C(P_i) - 2
\]
Summary SmartDFS

- Gridpolygons without holes: $\frac{7}{6}$
- Lower bound: $\frac{4}{3}$
- SmartDFS: $\frac{4}{3}$
- More sophisticated approach: approx. $\frac{5}{4}$
- Lower bound: $\frac{20}{17}$
- Optimal Offline Solution?