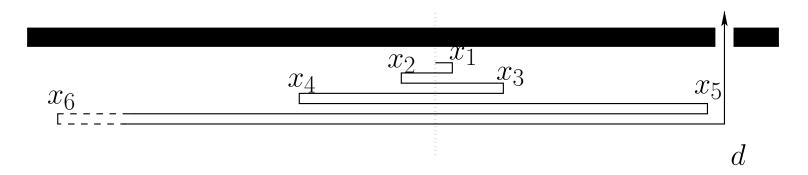
Online Motion Planning MA-INF 1314 Searching Points/Rays

Elmar Langetepe University of Bonn

Rep.: Searaching for a point!

- 2-ray search: Point on a line
- Compare with shortest path, competitive?
- ullet Reasonable strategy: Depth x_1 , depth x_2 and so on
- Traget at least step 1 away!
- Worst-Case, just behind d, one add. turn!
- Strategy, such that: $\sum_{i=0}^{k+1} 2x_i + x_k \leq Cx_k$
- Minimize: $\frac{\sum_{i=0}^{k+1} x_i}{x_k}$, Functional!



Rep.: Theorem Gal 1980

If functional F_k fulfils:

- \mathbf{i}) F_k continuous
- ii) F_k unimodal: $F_k(A \cdot X) = F_k(X)$ und $F_k(X + Y) \leq \max\{F_k(X), F_k(Y)\}$,
- iii) $\liminf_{a \to \infty} F_k\left(\frac{1}{a^{k+i}}, \frac{1}{a^{k+i-1}}, \dots, \frac{1}{a}, 1\right) = \lim\inf_{\epsilon_{k+i}, \epsilon_{k+i-1}, \dots, \epsilon_1 \to 0} F_k\left(\epsilon_{k+i}, \epsilon_{k+i-1}, \dots, \epsilon_1, 1\right),$
- iv) $\liminf_{a\mapsto 0} F_k\left(1, a, a^2, \dots, a^{k+i}\right) = \lim\inf_{\epsilon_{k+i}, \epsilon_{k+i-1}, \dots \epsilon_1 \mapsto 0} F_k\left(1, \epsilon_1, \epsilon_2, \dots, \epsilon_{k+i}\right),$
- v) $F_{k+1}(f_1,\ldots,f_{k+i+1}) \geq F_k(f_2,\ldots,f_{k+i+1}).$

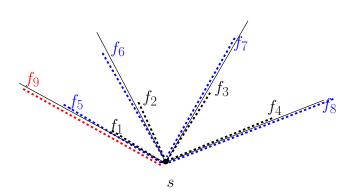
Then: $\sup_k F_k(X) \ge \inf_a \sup_k F_k(A_a)$ mit $A_a = a^0, a^1, a^2, \ldots$ und a > 1.

Rep.: Example 2-ray search

- ullet $F_k(f_1,f_2,\ldots):=rac{\sum_{i=1}^{k+1}f_i}{f_k}$ for all k.
- **●** Unimodal $F_k(A \cdot X) = F_k(X)$ and $F_k(X + Y) \leq \max\{F_k(X), F_k(Y)\}$?
- $\bullet \ \frac{\sum_{i=1}^{k+1} A \cdot f_i}{A \cdot f_k} = \frac{\sum_{i=1}^{k+1} f_i}{f_k}$
- $F_k(X+Y) \le \max\{F_k(X), F_k(Y)\}$?
- Follows from $\frac{a}{b} \ge \frac{c}{d} \Leftrightarrow \frac{a+c}{d+b} \le \frac{a}{b}$
- Simple equivalence!
- ullet Optimize: $f_k(a) := rac{\sum_{i=1}^{k+1} a^i}{a^k}$
- Minimized by a=2

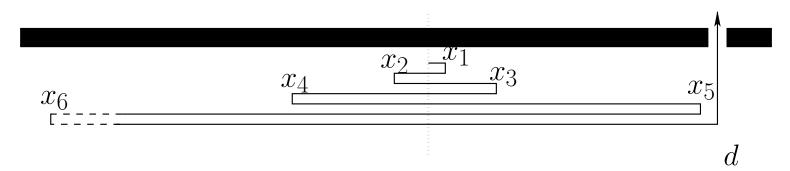
Rep.: Search on m-rays

- Lemma For the m-ray search problem there is always an optimal
- competitive strategy (f_1, f_2, \ldots) that visits the rays in a periodic order and with overall increasing depth.
- periodic and monotone: (f_i, J_i) , $J_i = j + m$, $f_i \ge f_{i-1}$
- Proof: First index with: $f_i > f_{i+1}$, $J_i > J_{i+1}$, Exchange values and the order on the rays, successively!
- (f_i, J_i) , $J_i = j + m$, $f_i \ge f_{i-1}$ Theorem of Gal can be applied!



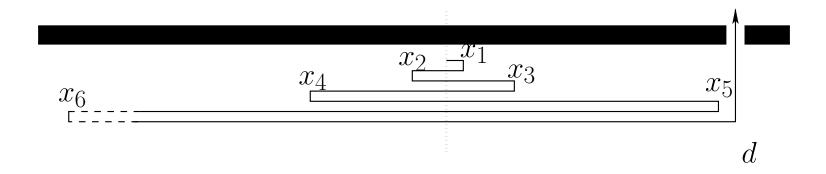
- Other approach: Optimality for equations!

 Reasonable strategy, ratio: $\frac{\sum_{i=1}^{k+1} 2x_i + x_k}{x_k} = 1 + 2 \frac{\sum_{i=1}^{k} x_i}{x_k}$
- Ass.: C optimal, $\frac{\sum_{i=1}^{k+1} x_i}{x_i} \leq \frac{(C-1)^k}{2}$
- There is strategy $(x_1',x_2',x_3'\ldots)$ s. th. $\frac{\sum_{i=1}^{k+1}x_i'}{x_i'}=\frac{(C-1)}{2}$ for all k
- Monotonically increasing in x_i' $(j \neq k)$, decreasing in x_k'
- First k with: $\frac{\sum_{i=1}^{k+1} x_i}{x_k} < \frac{(C-1)}{2}$, decrease x_k
- $\frac{\sum_{i=1}^k x_i}{x_{k-1}} < \frac{(C-1)}{2}$!, x_{k-1} decrease etc., monotonically decreasing sequence, bounded, converges! Non-constructive!



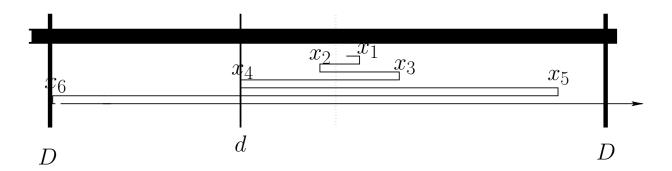
Other approach: Optimality for equations!

- Set: $\frac{\sum_{i=1}^{k+1} x_i'}{x_i'} = \frac{(C-1)}{2} \text{ for all } k$
- $\sum_{i=1}^{k+1} x_i' \sum_{i=1}^k x_i' = \frac{(C-1)}{2} (x_k' x_{k-1}')$
- Thus: $C'(x'_k x'_{k-1}) = x'_{k+1}$, Recurrence!
- Solve a recurrence! Analytically! Blackboard!
- Characteristical polynom: No solution C' < 4
- $x'_i = (i+1)2^i$ with C' = 4 is a solution! Blackboard! Optimal!



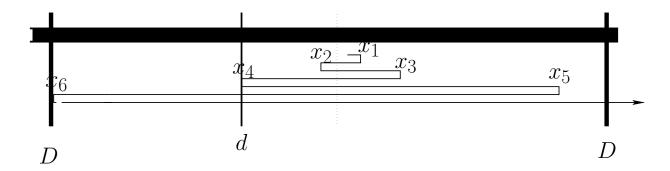
2-ray search, restricted distance

- \bullet Assume goal is no more than dist. $\leq D$ away
- Exactly D! Simple ratio 3!
- Find optimal startegy, minimize C!
- ullet Vice-versa: C is given! Find the largest distance D (reach R) that still allows C competitive search.
- One side with $f_{\mathsf{Fnde}} = R$, the other side arbitrarily large!



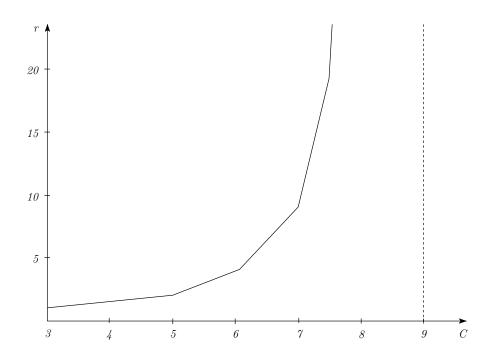
2-ray search, maximal reach R

- ullet C given, optimal reach R!
- Theorem The strategy with equality in any step maximizes the reach R !
- Strategy: $\frac{\sum_{i=1}^{k+1} x_i}{x_k} = \frac{(C-1)}{2}$, first step: $x_1 = \frac{(C-1)}{2}$
- Recurrence: $x_0 = 1$, $x_{-1} = 0$, $x_{k+1} = \frac{(C-1)}{2}(x_k x_{k-1})$
- Strategy is optimal! By means of the Comp. Geom. lecture!



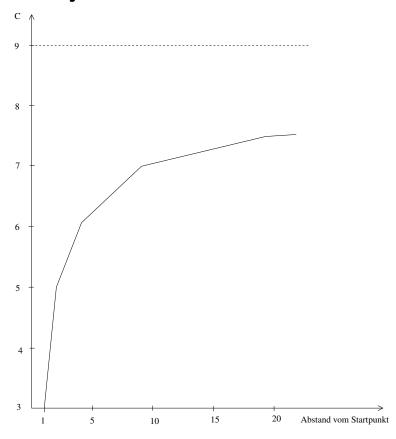
2-ray search, maximal reach R

- $\bullet \ f(C) := {\sf maximal \ reach \ depending \ on \ } C {\sf I}$
- Bends are more steps!



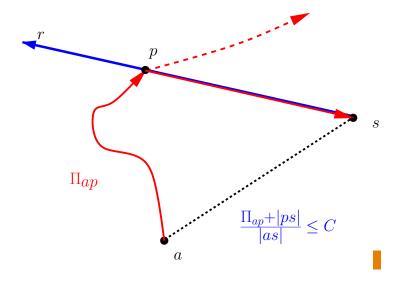
2-ray search, given distance R

- ullet $f(C) := \max \{ maximal reach depending on <math>C \}$
- Rotate, R given, binary search!



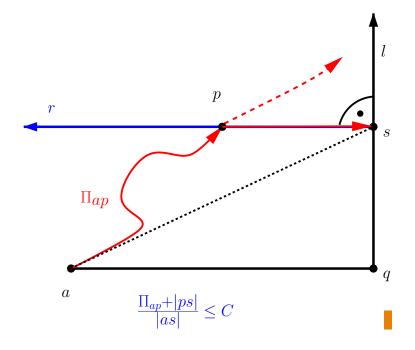
Searching for the origin of ray

- Unknown ray r in the plane, unknown origin s
- Startpoint a
- Searchpath Π , hits r, detects s, move to s!
- Shortest path OPT, build the ratio
- ullet Π has competitive ratio C if inequality holds for all rays
- ullet Task: Find searchpath Π with the minimal C



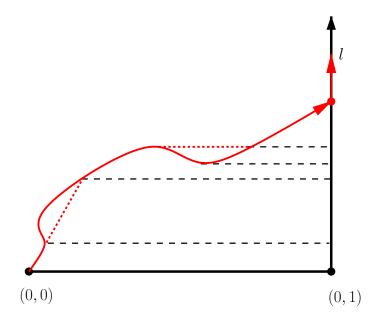
The Window-Shopper-Problem

- Unknown ray starts at s on *known* vertical line l(window)
- ullet Ray starts perpendicular to l
- ullet aq runs parallel to r
- Motivation: Move along a window until you detect an item
- Move to the item



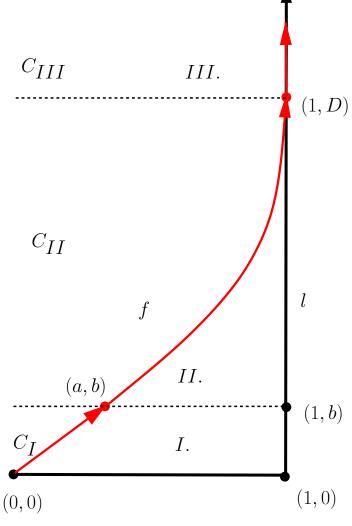
Some observations

- ullet Any reasonable strategy is monotone in x and y
- ullet Otherwise: Optimize for some s on l
- Finally hits the window
- Ratio is close to 1 in the beginning, but bigger than 1
- Ratio goes to 1 at the end



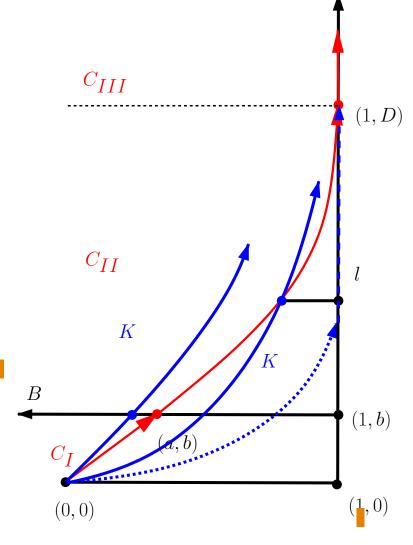
Strategy design: Three parts

- A line segment from (0,0) to (a,b) with increasing ratio for s between (1,0) and (1,b)
- ullet A curve f from (a,b) to some point (1,D) on l which has the same ratio for s between (1,b) and (1,D)
- \bullet A ray along the *window* starting at (1,D) with decreasing ratio for s beyond (1,D) to infinity!
- ullet Worst-case ratio is attained for all s between (1,b) and (1,D)



Optimality of this strategy

- By construction
- Curve has the given property
- Proof: Curve is convex
- Assume: Optimal curve K
- K hits ray B at some point (x,b)
- Two cases:
 - Hits B to the left of a: ratio is bigger
 - Cross f beyond B from the right: ratio is bigger



Design of the strategy: By conditions

- 1) Monotonically increasing ratio for s from (1,0) to (1,b)
- ullet 2) Constant ratio for s from (1,b) to (1,D)
- Determines a, b and D

