Online Motion Planning MA-INF 1314
Bug-Algorithm

Elmar Langetepe
University of Bonn
Repetition: Pledge Algorithm with sensor errors

Pledge-like curve!

Def. \(K \) class of curves in \(C_{\text{frei}} \cup C_{\text{halb}} \), with the following conditions:

1. Parameterized curve with turn-angles and position:
 \[
 C(t) = (P(t), \varphi(t)) \text{ mit } P(t) = (X(t), Y(t))
 \]
2. Curve surrounds obstacle by Left-Hand-Rule
3. Leaves point is a vertex of an obstacle
4. \(C_{\text{free}} \)-condition holds:
 \[
 \forall t_1, t_2 \in C : P(t_1), P(t_2) \in C_{\text{free}} \Rightarrow |\varphi(t_1) - \varphi(t_2)| < \pi
 \]
5. \(C_{\text{halb}} \)-condition holds:
 \[
 \forall h_i, t \in C : P(t) = P(h_i) \Rightarrow \varphi(t) - \varphi(h_i) < \pi
 \]
Rep.: Proof correctness

- **Lemma** Curves from \mathcal{K} do not self-intersect.
- **Lemma** Curves from \mathcal{K} hit any edge once.
- **Lemma** For any curve from \mathcal{K}: Obstacle will no longer be left, then the curve is enclosed by the obstacle.
- **Theorem** Curves from \mathcal{K} escape, if this is possible.
Rep.: Applications of the model

Corollary Compass with deviation maximal $\frac{\pi}{2}$ is sufficient for escaping from a labyrinth.

Corollary Axis-parallel scene, hold the direction in the range $\left(-\frac{\pi}{2}, +\frac{\pi}{2}\right)$ and distinguish between horizontal and vertical. Escape!
Rep: Pseudo orthogonal

- Small deviations at the vertices! From global coordinates!
- 1. Condition: Numbers convex vert. = reflex vert. + 4
- Small deviations!
- $\text{div}(e) : e = (v, w)$ smallest deviation from horizontal/vertical line passing durch v und w
- $\text{div}(P) := \max_{e \in P} \text{div}(e) \leq \delta$, Def.: δ-pseudo orthogonal scene

![Diagram]

(i) \hspace{1cm} (ii)
Rep: δ-pseudo orthogonal

Corollary δ-pseudo-orthogonal scene P. Measure angles with precision ρ s.th. $\delta + \rho < \frac{\pi}{4}$. Deviation in the free space always smaller than $\frac{\pi}{4} - 2\delta - \rho$ from global starting direction. Escape from a labyrinth is guaranteed.

1. Distinguish reflex/convex corners: Counting the turns!
2. Max. global deviation of starting direction: Intervall π
3. Distinguish: Horizontal/Vertical
Rep.: δ-pseudo orthogonal scene

- Precision ρ with $\delta + \rho < \frac{\pi}{4}$
- Free-space max. deviation $\frac{\pi}{4} - 2\delta - \rho$
- 1. Distinguish reflex/convex corners: Worst-case

Diagram:
- Convex vertex
- Reflex vertex
Szene δ-pseudo orthogonal

- Precision ρ with $\delta + \rho < \frac{\pi}{4}$
- Free-space max. deviation $\frac{\pi}{4} - 2\delta - \rho$
- 3. Horizontal/vertical: Worst-case

\[\varphi = 0 \]
\[\gamma = -\frac{\pi}{2} \]

\((i) \) \hspace{2cm} \((ii) \) \hspace{2cm} \((iii) \)
Szene δ-pseudo-orthogonal

- Precision ρ with $\delta + \rho < \frac{\pi}{4}$
- Free-Space deviation $\frac{\pi}{4} - 2\delta - \rho$
- Max. global deviation of starting direction: Intervall π
- Leave in $[-\delta, \delta]$
- Deviation for the next hit: $\frac{\pi}{4} - 2\delta - \rho$
Find a target point

- Searching for a given goal: Navigation
- Polygonal environment: Finite number of polygons
- Touch sensor: Hand-Rules
- Start \(s \), target \(t \), coordinates are given
- Finite storage: I.e. Own coordinates
- BUG Algorithms: Sojourner
Notations

- $|pq|$ distance between p and q
- $D := |st|$ distance from start to goal
- Π_S path of strategy S from start to goal
- $|\Pi_S|$ length of the path Π_S
- UP_i perimeter of obstacle P_i
- Actions:
 1. Move into direction of the target
 2. Follow the wall

- Leave-Points l_i, Hit-Points h_i
BUG1 strategy: Lumelsky/Stepanov
BUG1 strategy: Lumelsky/Stepanov

0. $l_0 := s$, $i := 1$

1. From l_{i-1} move into target direction, until
 (a) Goal is reached: Stop!
 (b) An obstacle is met at h_i.

2. Surround the obstacle O in cw order — continuously calculate and store the point l_i on O closest to t —, until
 (a) Goal is reached: Stop!
 (b) h_i is visited again!

3. Move along the shortest path along O to l_i.

4. Increment i, GOTO 1.
Correctness BUG1 strategy

Theorem The strategy BUG1 finds a path from \(s \) to \(t \), if such a path exists.

Proof:

- Sequence of Hit- and Leave-Points \(h_i, l_i \)
- \(|st| \geq |h_1t| \geq |l_1t| \ldots \geq |h_kt| \geq |l_kt|\)
Theorem Correctness BUG1 strategy

- Point with smallest distance to t: Leave-Point l_i
- No free movement to $t \implies$ enclosed
- $l_i \neq l_j$, new obstacle!
- Finitely many obstacles \implies correctness
Path length BUG1 strategy

Theorem Let Π_{Bug1} be the path from s to t, calculated by the BUG1-strategy. We have: $|\Pi_{\text{Bug1}}| \leq D + \frac{3}{2} \sum_i \text{UP}_i$.

Proof:

- Subdivision: Free space path, surrounding
- Surrounding, then shortest path to l_i
- $\frac{3}{2} \sum \text{UP}_i$
- Finally: Path D' between the obstacles
Theorem \(|\Pi_{\text{Bug1}}| \leq D + \frac{3}{2} \sum_i \text{UP}_i\).

Proof: \(D'\) between the obstacles

\[
D' = |sh_1| + |l_1h_2| + \ldots + |l_{k-1}h_k| + |l_k t|
\]

\[
\leq |sh_1| + |l_1h_2| + \ldots + |l_{k-1}h_k| + |h_k t|
\]

\[
= |sh_1| + |l_1h_2| + \ldots + |l_{k-1} t|
\]

\[
\ldots
\]

\[
\leq |sh_1| + |l_1 t| \leq |sh_1| + |h_1 t| = |st| = D
\]
Lower bound?

- Show: Bug1 is $\frac{3}{2}$-competitive
- Surround the obstacles along the path
- **Corollary** Bug1 is $\frac{3}{2}$-competitive
- Adversary strategy for the model
- Actions:
 1. Move into direction
 2. Follow the wall
- Leave-Points l_i, Hit-Points h_i
Lower bound

Theorem For any strategy S (due to the action-model), and for any $K > 0$, there exist a strategy with arbitrary $D > 0$, such that for any $\delta > 0$: $|\Pi_S| \geq K \geq D + \sum \text{UP}_i - \delta$.

Arbitrarily large path!
\[|\Pi_S| \geq K \geq D + \sum \text{UP}_i - \delta. \]

- Virtual horse-shoe, Width $2W$, Thickness $\epsilon \ll \delta$, Length L, Distance D

- Virtual gets precise: Touch the wall!

- For any strategy S

![Diagram of virtual horse-shoe and its components](attachment:image.png)
\[|\Pi_S| \geq K \geq D + \sum \upPi_i - \delta. \]

- Idea: \[D + W - \sqrt{D^2 + W^2} \leq \delta/2 \] and
\[L + W - \sqrt{L^2 + W^2} \leq \delta/2, \] \(L, W \) large enough!

- \[|\Pi_S| \geq \sqrt{L^2 + W^2} + L + \sqrt{D^2 + W^2} \geq D + W + L + W - \delta = D + 2(L + W) - \delta \]
\[|\Pi_S| \geq K \geq D + \sum \text{UP}_i - \delta. \]

- Problem: Left and right part! Peri. \(4(L + W)\)
- Inside horse-shoe: \(|\Pi_{I_1}| \geq \sum \frac{1}{2} \text{UP}_i \) non-overlapping
- \(|\Pi_{I_2}| \geq \sum \text{UP}_j \) overlapping, \(r_j \) path back
- Outside horse-shoe: \(|\Pi_A| \geq L + C \) with \(C = \sqrt{D^2 + W^2} \)
- \(L_{A_1} \geq \sum \frac{1}{2} \text{UP}_i \) for non-overlapping
- Altogether: \(|\Pi_S| \geq \sqrt{D^2 + W^2} + \sum \text{UP}_i - 2n\epsilon \)
- \(n \leq \frac{2L}{\delta}, \epsilon \leq \delta^2/(4L) \) gives \(2n\epsilon \leq \delta/2 \)
- \(|\Pi_S| \leq D + W + \sum \text{UP}_i - \delta \)
BUG2 strategy

Line G passing st, target direction, surround obstacle, shortest curr. distance on G, move to target
BUG2 strategy

0. \(l_0 := s, \ j := 1 \)

1. From \(l_{j-1} \) move toward target, until

(a) Goal is reached: Stop!
(b) Obstacle is met at \(h_j \).

2. Surround obstacle cw order, until

(a) Goal is reached: Stop!
(b) Line \(G \) passing \(st \) is visited at \(q, \ |qt| < |h_jt| \) and \(qt \) locally free for a move

\(l_j := q, \ j := j + 1 \) and GOTO 1.

(c) \(h_j \) is reached again, no point \(q \) of case b) was found.

Reaching the goal is impossible.
BUG2 strategy: Analysis

- Structural properties
- Correctness and performance
- **Lemma** Bug2 visits finitely many obstacles

Proof, by precondition for the scene!
BUG2 strategy: Property

Lemma Let \(n_i \) denote the number of intersections between \(G \) (line passing \(st \)) and the obstacle \(P_i \). Any boundary point of \(P_i \) is visited at most \(\frac{n_i}{2} \) time.

- Bug2 defines pairs \((h_j, l_j)\) of hit- and leave points
- Jumping cond.: \(|h_j t| > |l_j t| > |h_{j+1} t| \)
- Any intersection with \(P_i \) is only once a leave or a hit point
- Meet current hit point \(\Rightarrow \) Stop

![Diagram showing Bug2 strategy with points labeled s, h_1, p_1, p_2, l_1, l_2, h_2, l_3, p_3, t, and lines connecting these points.](image-url)
Bug2 visits boundary points max $\frac{n_i}{2}$ times

- Pairs (h_j, l_j) of hit-leave points
- $\frac{n_i}{2}$ pairs (h_j, l_j)
- Only then a surrounding is started
- Point on the boundary only $\frac{n_i}{2}$ times
Corollary Bug2 visits the goal, if this is possible.

- Finitely many visits, finitely many surroundings!
- Either goal is found or current hit point is visited again
- Current hit point \Rightarrow no free path from a better point on the boundary. Goal is enclosed!
BUG2 strategy: Performance

Theorem Let Π_{Bug2} denote the path from s to t designed by BUG2. We have $|\Pi_{\text{Bug2}}| \leq D + \sum_i \frac{n_i \text{UP}_i}{2}$. Proof:

- Subdivision: Surroundings, Free path
- $\sum_i \frac{n_i \text{UP}_i}{2}$ follows from the Lemma
- Length D' between obstacles
BUG2 strategy: Performance

- Length D' between obstacles
- Analogously **BUG1 Theorem** $D' \leq D$
- Altogether:

\[|\Pi_{\text{Bug2}}| \leq D + \sum_{i} \frac{n_i \text{UP}_i}{2}. \]
Compare BUG2 and BUG1

- BUG2 not always better, sometimes worse (Exercise)
- Convex polygons: Optimal
- Many further variants!
- Visibility/Local improvements!
Change I

- Bug1 fully surrounds
- Bug2 avoids, but visits many times
- Change make use of old Leave/Hit Points, **One** order change!
Pseudocode: Change I

0. $\ell_0 := s, i := 1$

1. Move from ℓ_{i-1} along line passing st toward goal, until

 (a) Goal is reached: Stop!

 (b) Obstacle is met at h_i.

2. Surround obstacle cw order, until

 (a) Goal is reached: Stop!

 (b) Line G passing st is visited at q, $|qt| < |h_jt|$ and qt locally free for a move, $l_j := q, j := j + 1$ and GOTO 1.
(c) A hit- or leave point h_j or ℓ_j with $j < i$ is met. Move back to h_i, use ccw order until (a), (b) oder (d) happens.

(d) h_j is reached again, no point q of case b) was found. Reaching the goal is impossible.