Institut für Informatik
Prof. Dr. Heiko Röglin
Dr. Melanie Schmidt

Problem Set 10

Problem 1

Consider an arbitrary binary optimization problem with linear objective $c^{T} x$ and solution set $\mathcal{S} \subseteq\{0,1\}^{n}$ as discussed in Chapter 7 . Recall that the winner gap Δ is defined as

$$
\Delta:=c x^{*}-c x^{* *}
$$

where x^{*} is an arbitrary optimal solution and $x^{* *}$ is a solution that is optimal amongst all solutions in $\left\{x \in \mathcal{S} \mid x \neq x^{*}\right\}$. Find better upper bounds on $\operatorname{Pr}(\Delta \leq \epsilon)$ than the bound provided by Lemma 7.3 for the following scenarios:

1. The c_{i} are numbers from $[1, e]$ that are chosen independently from the distribution with the density

$$
f(x)= \begin{cases}\frac{1}{x} & \text { for all } x \in[1, e] \\ 0 & \text { else }\end{cases}
$$

2. The c_{i} are ϕ-perturbed numbers from $[0,1]$.

Problem 2

Assume that c is ϕ-perturbed, and we additionally know that all c_{i} are drawn independently from the same distribution with density function $f(x)$, where

1. $f(x)$ is the density of the uniform distribution over the interval $[4,4+u]$ for a constant $u>0$.
2. $f(x)=\left\{\begin{array}{ll}x^{2} \cdot \frac{3}{u^{3}} & \text { for } x \in[0, u] \\ 0 & \text { else }\end{array} \quad\right.$ for a constant $u \in(0, \infty)$.
3. $f(x)=\left\{\begin{array}{ll}\frac{1}{x} \cdot \frac{1}{\ln u} & \text { for } x \in[1, u] \\ 0 & \text { else }\end{array} \quad\right.$ for a constant $u \in(1, \infty)$.

For all three cases, do the following: Compute (a best possible) ϕ. Then give a best possible upper bound $\nu_{\epsilon}(u)$ for the probability to draw a number from a given fixed interval of width $\epsilon \in(0,1)$.

Assume someone tells us that c is 3-perturbed. Based on this fixed $\phi=3$, for which of the three scenarios do we get the largest (i.e. worst) $\nu_{\epsilon}(u)$?

