Institut für Informatik Prof. Dr. Heiko Röglin Dr. Melanie Schmidt

Problem Set 4

Problem 1

Let $(\Omega, \mathbf{P r})$ be a discrete probability space and let $X, Y: \Omega \rightarrow \mathbb{R}$ be discrete random variables. Assume that $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$ exist, let $a, b \in \mathbb{R}$ be two real values. Prove that:

1. $\operatorname{Var}(a X+b)$ exists and $\operatorname{Var}(a X+b)=a^{2} \cdot \operatorname{Var}(X)$.
2. If X and Y are independent, then $\operatorname{Var}(X+Y)$ exists and

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Problem 2

Can the Markov inequality be improved? Show that for any $a>1$, it is possible to define a random variable X_{a} that is non-negative, $\mathbf{E}\left(X_{a}\right)$ exists and

$$
\operatorname{Pr}\left(X_{a} \geq a \cdot \mathbf{E}\left(X_{a}\right)\right)=1 / a
$$

holds. What bound does Chebychev's inequality give for X_{a} ?

Problem $3\left(^{*}\right)$

We assume that we get an array $A=\left[x_{1}, \ldots, x_{n}\right]$ with n distinct numbers. QuickSelect finds the k th smallest element in A, i. e. the element that would be at position k when A is sorted increasingly. QuickSelect can in particular compute the median.

It proceeds in a similar fashion as QuickSort by choosing a pivot element x, partitioning the array into the smaller elements, x itself and the larger elements and then recursing. We assume that Partition(A, i, j, m) stores $A[m]$ in x, then swaps elements in A in time $c \cdot(j-i+1)$ for some constant c such that $A[i, \ldots, j]$ first contains all elements that are smaller than x, then x and then all elements that are larger than x. It returns the new position of x. Consider the following non-recursive realization of randomized QuickSelect:
RQuickSelect $\left(A=\left[x_{1}, \ldots, x_{n}\right], k \in\{1, \ldots, n\}\right)$

1. set $i=1$ and $j=n$
2. while $i \neq j$ do
3. Choose m uniformly at random from $\{i, \ldots, j\} \quad$ (thus, $A[m]$ is pivot)
4. set $m^{\prime}=\operatorname{Partition}(A, i, j, m) \quad\left(m^{\prime}\right.$ is the pivot's position in the sorted array)
5. if $\left(m^{\prime}=k\right)$ then set $i=m^{\prime}$ and $j=m^{\prime}$
6. if $\left(m^{\prime}<k\right)$ then set $i=m^{\prime}+1$
7. if $\left(m^{\prime}>k\right)$ then set $j=m^{\prime}-1$

8. return $A[i]$

To analyze the expected running time of RQuickselect(A,k), we partition the execution into phases: A phase consists of iterations of the loop, where the number of elements $j-i+1$ is some value n^{\prime}. The first phase starts with the first iteration of the loop where $n^{\prime}=n$. A phase ends when $j-i+1$ was decreased to at most $(3 / 4) n^{\prime}$, or when $j-i+1=1$. Let X_{ℓ} be the number of iterations of the loop in phase ℓ. Analyze $\mathbf{E}\left(X_{\ell}\right)$ and use your result to bound the expected running time of RQuickSelect. For simplicity, assume that $(3 / 4)^{\ell} n$ is an integer for $\ell \in\left\{1, \ldots, \log _{(4 / 3)} n\right\}$.

